
1

THE DISCRETE AND THE FAST FOURIER TRANSFORM

J Liljencrants 84-05-09, rev 92-12-15, 97-11-27

1. THE DISCRETE FOURIER TRANSFORM, DFT

To make it possible to handle the signal in a computer we have to sample it, we must get a finite

set of samples rather than the infinite number needed to represent it completely. In making

Fourier analysis of this sampled signal we get the same problem once more, since the spectrum

of the sampled signal is continuous, even though we can limit ourselves to the 'mother' spectrum

limited by half the sampling frequency. To that end we represent the spectrum with a number of

samples, as many as those of the time sequence, and define the Discrete Fourier Transform, DFT,

as

 N-1

Xk = Σ xn e
-j2πkn/N

 ; n, k = 0 ... N-1 , 1)

 n=0

where xn are the N samples in the time series (for instance N samples of a continuous signal), and

Xk are corresponding samples in a frequncy series defining the complex discrete spectrum of xn.

DFT could be compared to the Fourier ,F , integral

S(f) = ∫ s(t) e
-j2pft

dt (2)

with integration over a finite time interval. Our subscript k thus corresponds to the continuous

frequency f, and n to time t.

To obtain one of the N frequency samples you have to accumulate the sum of all the N time

samples, each multiplied by the rotation vector. This vector is somtimes called the twiddle factor

and for simplicity it is notated as

WN
kn

 ; WN = e
-j2π/N

 . (3)

The Xk samples, N in number, represent the spectrum of the signal between minus and plus half

the sampling frequency. Since it is easier, especially when it comes to computer programming, to

have the indexes to arrays positive, the usual convention is to let the negative frequencies be

represented by the first half of the positive alias instead. This can be done since all the aliases are

identical to the mother spectrum, something that is also seen from

W
(k+N)*n

 = W
kn

*W
Nn

 = W
kn

*e
-j2πn

 = W
kn

*1 .

The DFT, like the continuous F transform has some symmetry properties that are important for

its application. If the time series is real, which is the case for a physical signal, then the real part

of the transform has an even symmetry and the imaginary part has odd symmetry. Let us take just

one sample xn in the definition (1). Its contributions to X-k and to Xk are obviously complex

conjugate if xn is real. Since this holds for all the real xn the same holds for the sum.

Thus for a real sequence xn:

Re{xn} = xn Re{Xk} = Re{X-k} = Re{XN-k} even

Im{xn} = 0 Im{Xk} = -Im{X-k} = -Im{XN-k} odd

2

Similar relations can be found for other conditions, and we may put up the following table of

symmetry rules:

Re{xn} Im{xn} Re{Xk} Im{Xk}

xn 0 even odd

0 xn odd even

even odd Xk 0

odd even 0 Xk

even even even even

odd odd odd odd

even 0 even 0

odd 0 odd 0

0 even 0 even

0 odd 0 odd

It is fairly simple to show that the time series can be recovered from the frequency series by

means of the Inverse DFT, IDFT, defined by

 1 N-1

xn = - Σ Xk e
j2πkn/N

 ; n, k = 0 ... N-1 . (4)

 N n=0

In analogy to the case with the continuous transforms the IDFT differs from the DFT by a scaling

factor 1/N and the sign of the exponent. Thus, to perform the IDFT we do not need a separate

algorithm, we can instead

1. compute the DFT,

2. divide the result by N,

3. reverse the order of the samples.

Next page, fig 1a-f, shows a number of time-frequency DFT pairs on sequences of 16 points. The

time function is in all cases real and consists of a single pulse. The DFT is shown with real and

imaginary parts in separate graphs. The figures are quantitavely correct, but at instances a scale

factor is used as indicated. A supplementary plot shows the complex DFT as a three-dimensional

curve, projected at an angle to the paper.

First thing, remember again that the right end of frequency function represents the sampling rate,

(the Nyquist rate), not half of this which is the highest frequency components the signal may

have.

Some features of the DFT are illustrated:

• A number of the symmetries in the table above can be identified.

• When the pulse avances in time, fig 1a-e, the magnitude of the DFT is constantly the

same, but the phase increases more rapidly with frequency (the delay theorem).

• When the impulse advances one step, the frequency sequence will contain exacly one

more period of a cosine/sine. Ends always meet.

Of paramount importance when it comes to programming operations with the DFT is that you do

not err in the exact numbering of the samples. The rectangles in the figures cover the range from

sample number 0 to sample number N (here N=16). But there are only N samples, the last one at

location N-1. There is no sample at the right edge. At this place would come sample number 0 of

the next alias, identical to number 0 in the actual sequence. The points of symmetry are number 0

and number N/2 (here =8).

3

Fig 1. DFT of single impulses at different times.

4

Fig 2. DFT of pulses, two samples in duration, and Fourier interpolation.

5

When reversing the order of samples, so as to get the IDFT from the DFT, do not touch number

0, exchange number 1 with number N-1 (=15), etc.

When extracting the odd and even components of a sequence you have

xodd,n = (xn - xN-n)/2 ; n = 1 ... N/2-1

xodd,0 = 0.

xeven,n = (xn + xN-n)/2; n = 1 ... N/2-1

xeven,0 = x0.

Do not try to put n=0 in the general formula, in the computer there will be some irrelevant junk at

xN, it is outside your array.

Fig 2 shows the DFT of a pulse, two samples in duration. The spectrum is built up from two

cosinoidal/sinusoidal shapes, having 2 and 3 periods along the frequency axis since input is at

samples 2 and 3. Fig 2b-c shows how incrementing the number of time samples with zeroes at

the end gives a smoother transform.

Fig 2d-e illustrates a related procedure called Fourier interpolation. The 16 sample time sequence

is transformed. The DFT is cut in two at its middle and is spaced up into N=32 by inserting

zeroes. Finally it is transformed back to the time domain with IDFT to render the Fourier

interpolated result, fig 2e left. Additionally the result has to be multiplied by a factor of 2 in order

to match in amplitude, rather than in amplitude*samples.

One application of this procedure is up-sampling, to increase the nominal sampling rate of a

signal without adding spurious frequency components. Compare fig 2f. Here the time function is

square as you would get by just duplicating the samples of fig 2d. The corresponding spectrum

does have components at high frequencies.

This case can also illustrate ideal lowpass filtering: transform the fig 2f time sequence into the

frequency domain by DFT, zero out high frequency components to get the fig 2e frequency

sequence, and finally get lowpass filtered time sequence fig 2e by IDFT. (Spectra of 2e and 2f do

not match exactly at low frequencies because of some time skew).

Another illustration of some symmetries is shown here in fig 3:

Fig 3a.

The transform of a single pulse is first shown as a spiral in the frequency domain. The spiral

makes 2 turns because the pulse is at sample number 2. Adding an equal pulse in number 14

makes the time series even (and still real), and the transform is even and real. The transform is

the sum of two spirals, equal in magnitude and pitch, but opposite in direction of rotation.

6

Fig 3b.

Similarly making an odd time series gives an odd and imaginary transform:

Fig 3c.

From these figures we can also comment transformation of a sinusoid assuming the right hand

figure to represent time and the left hand to represent frequency. We see how the transform of a

cosinusoid comes out as a pair of equal spectral lines at plus and minus the appropriate

frequency. Changing the phase of the signal to make it a sinusoid shows up as a half revolution

phase shift and an odd and real transform.

Now, what happens is we transform a sinusoidal signal that does not have an integer number of

periods within the time interval? The spectrum should then ideally be a line at some frequency

that is not represented by any sample. The continuous spectrum would have been this fictive

spectral line convolved with a sin(x)/x function (the transform of our finite time window of N

samples). When our sinusoidal time function does have an integer number of periods then the

appropriate frequency sample coincides with the peak of the sin(x)/x shape, and all the other

frequency samples come at its zero crossings. The time function with a non-integer number of

periods gives a skewed sampling of the sin(x)/x shape, and all the spectrum samples are non-

zero.

See fig 4 where only the lower half of the spectrum, up to half the sample rate is shown, and

furthermore only the magnitude, converted into dB.

This effect is rather disastrous in making spectral analysis. The remedy is to modify the input

prior to the transformation with a suitable window. The window function is then chosen such that

its transform has sufficiently low sidelobes. Specially popular are the Hann window (inverted

cosine period, raised to give zero values at its ends), and the Hamming window (same shape, but

raised a little bit more, such that its transform sidelobes are approximately the same level

everywhere, -40 dB).

7

Fig 4.Transforms of 3 periods which has a clean spectral line, and of 3.5 periods which fills the

entire spectrum.

Fig

5. Transform of 3.5 periods windowed by a Hamming window such that spurious frequency

components are reduced. The useful spectral peak is widened because the effective window time

is smaller than the total window base time.

8

2. THE FAST FOURIER TRANSFORM ALGORITHM, FFT

The amount of computation to get the transform from the definition is N
2
 complex

multiplications and additions, an amount that may be inordinate for larger N.

FFT is an elegant algorithm that optimizes the order in which the partial computations are

performed, the final result is exactly the same as from the definition (1) of the DFT. FFT stands

for the feature of computational speed in making the DFT, it is not a transform in itself as is

DFT. A prerequisite for FFT is that N can be resolved into factors, the greater the number of

factors, the better. In practice one almost always uses N = 2
n
. This is primarily because it makes

the programming of the algorithm easy, but it is not necessary that N is a power of two.

The following example shows one way to proceed: Given a time series xn, n=0 ..N-1. Split it up

into two different sequences x1l=x2l that is, with all the even numbered samples of x, and

x2l=x2l+1 with all the odd numbered samples. These new sequences are the half as long as x,

since l=0 .. N/2-1.

The DFT can be computed for each of these sequences separately from the definition as

 N/2-1

X1k = Σ x1l*W
2kl

 , (6)

 l=0

 N/2-1

X2k = Σ x2l*W
2kl

 .

 l=0

It can be shown formally that the wanted result Xk can be obtained from these partial transforms

as

Xk = X1k + WN
k
*X2k ; k=0 ... N/2-1 . (7)

The X1k sequence gives a

direct contribution to the Xk

sequence. The X2k sequence

is delayed one sample

interval and its contribution

is thus multiplied by WN
k
. A

direct application of the

displacement theorem can

thus be taken as a proof.

Since xk is defined for N

samples, but x1 and x2 for

only half as many, some rule

must be given for how to

interpret the result when

k=N/2 .. N-1. This is usually

done as a direct periodic

continuation:

Fig 6. Construction of an

eight-point DFT from two four-point DFTs.

9

Xk = X1k-N/2 + WN
k
*X2k-N/2 ; k = N/2 ... N-1 . (8)

The meaningful point with this operation is that the volume of computation is reduced. Instead of

making N
2
 multiplications and additions as with the definition we now make (N/2)

2
 operations

for each half sequence, plus the little extra work of (7) and (8). The net gain is thus almost a

factor of 2.

You can now repeat this procedure similarly to compute the two partial DFTs. These are then

developed as 4 DFTs, each with only N/4 samples.

The principle of FFT is to continue this method of splitting the sequence into smaller sub-

sequences, so called decimation, all the way possible. In the end we are to compute N transforms

of sequences being only one sample each. The transform of such a one sample sequence is just

the sample itself. The ultimate flow diagram will then be as in fig 7.

This procedure of splitting the time

series in two with the odd and even

numbered samples is called

decimation in time. The FFT can be

performed a different way,

decimation in frequency. You then

start by splitting the original

sequence into two parts, one with

the first N/2 samples, the other with

the rest. Following procedures are

very similar to the illustrated case.

Fig 7. Eight-point FFT obtained by successive splitting into two´s.

The total computational effort for FFT is proportional to 2N*
2
log(N) instead of N

2
 as would be

for the definition formula. For instance, with N=1024 the reduction of computation is about 50-

fold. Another good point with the FFT is that the accuracy of the result is better than with the

definition expression because you have a lesser number of rounding errors accumulated.

Looking at the flow diagram you see that in every stage of the computations you can take care of

samples in a pair, you make the computation of an FFT butterfly.

This is essential for the sake of memory economy because you

need no tables of intermediate results. This feature is called that

the operations are made in place. The drawback is that the

original xn sequence must be scrambled, the samples must be

arranged in a specific order before the FFT is excecuted.

Fig 8. FFT butterfly

10

Fig 9. Complete eight-point decimation-in-

frequency FFT

Alternatively decimation in frequency can be

shown as a flow diagram like fig 9. Here the

input sequence is ordered but the result

sequence is scrambled, an unscrambling is to

be made. Provided the ordinary case, that is

N=2n, the FFT changes the input and output

sequences into bit-reversed order. To find the

places of the corresponding input and result

samples you write the index in binary form,

and reverse the order of the bits. For instance,

in the N=8 FFT input sample number 3 has its

index in binary as 011. Bit reversal gives 110,

or decimal 6. Output sample number 3 is thus located at position 6 in the array. Like the FFT

computations proper, also the scrambling/unscrambling operations can be done in place when

you take care of samples in appropriate pairs.

Fig 10. In-place bitreversed scrambling.

Both the result of the transform and the intermediate results are sequences of complex numbers

that are represented by their real and imaginary parts. Thus also the input sequence is complex

even if a physical signal would have zero imaginary part. This means that the transform is

redundant in the sense that symmetrical samples are complex conjugate, as was shown in the

table of symmetry relations. A consequence is that the FFT can transform two entirely

independent real signals simultaneously. The two independent inputs are placed as real and

imaginary parts of the input. After the FFT proper you extract the odd and even parts of the result

to isolate the transforms of the two signals. These results are then single sided, the sequences

extend from number 0 to N/2-1. The other halves representing negative frequencies have to be

inferred from the symmetry rules.

FFT operations are therefore almost always complemented with some kind of shuffling

operations. These may imply to isolate the odd and even parts of the transform into two

sequences of half the original length, or the inverse operation, to develop an odd or even

sequence twice as long as the input. Several examples on how shuffling can be applied are found

in the figures of the DFT section.

