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With the Kelly—-Lochbaum reflection-type line model, the vocal tract is
modelied as a uniaxial set of equally long line segments of different
impedance. The paper deals with practicali aspects of its use for direct
speech synthesis in the time domain, including effects from time variation,
iosses, and noniinear phenomena. Existing modeis to account for time
veariation in the segment areas are brought out as dynamic corrections to the
static scattering, and are extended for the anaiogy of fiow partial waves. A
dichotomy between criteria of continuity in pressure and flow versus conti-
nuity in force and velocity is discussed. The dynamic scattering modeis of
both kinds are approximated with a simple method of adjusting partial waves
locaily. The function of the models is illuminated in a number of dynamic
tests, one working from a concept of resonance mode isolation. Both types of
dynamic models appear to be usefui, but for different purposes. The first is
relatively insensitive to undersampling of area data while the second is
cioser to physical reaiity.

The many loss phenomena in the vocai tract are reviewed and dispiayed in
several forms. They are formalized in a consistent way to make it easy to
inciude them in the reflection modei. Series and shunt losses in the line
modei are expressed as separate and additive corrections to the scattering
equations. Special attention is given to the "jet loss,” related to the
kinetic pressure drop. This is optionally handled as a variable generator or
as a loss resistance, and is used as o central element in simulating the
giottis as an integral part of the line model. Frequency-dependent losses,
inciuding those into the vocal tract wall, are treated using z transforms.
Also incorporated is a z domain model of lip radiation impedance. Generation
of noise at constrictions is theoretically reviewed. With support from a
nozzie-blowing experiment, a practical procedure is elaborated. Programs
implementing the features are briefly described in context with a system of
service programs.

The general shape of the vocai tract area function may be modelled in terms
of a few Fourier coefficients. This was found in an eariier paper, appendix
to the dissertation, to be an efficient means of describing the mid—sagittal
tongue profile. (Author)

Descriptors: Speech synthesis, Area function, Refiection line, Dynamic

scattering, Formant bandwidth, Constriction noise, Glottal flow.
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0.1 SUMMARY

The simple Kelly-Lochbaum ( 1982) line model is illuminated and augmented
with a number of tricks to render a comprehensive research tool for
simulation studies of the vocal tract. Several physical phenomena rele-
vant to speech synthesis are reviewed. They are formalized in a homoge-
neous manner in order to make it easy to apply the results to the reflec—
tion line analog. When possible those tricks have been put in the form of
corrections to the standard scattering equations. This approach makes it
particularly easy to connect and disonnect features for research studies.

Existing models to account for time wvariation in the areas by Maoeda
(1977) and Strube (1982) are brought out as dynamic corrections to the
static scattering, and also extended for the analogy of flow partial
waves. A dichotomy between criteria of continuity in pressure and fiow
versus continuity in force and velocity is discussed. The dynamic scat—
tering models of both kinds are approximated with a novel simple method
of adjusting portial waves iocally. The function of the models is illu~-
minated in a number of dynamic tests. Both types of dynamic modeis appear
to be useful, but for different purposes. The first is relatively insen-
sitive to undersampling of area data while the second is cioser to physi-
cal truth.

Methods of connecting paraliel branches to the line are outlined. This
makes it possibie to implement nasals and their complex patterns of pole-
Zero pairs in addition to the all-pole characteristics of the single
line.

Series and shunt losses in the line model are put as separate and addi-
tive corrections to the scattering equations, and a similar treatment is
shown for generators. Also the non-linear Bernoulli effect is handled
this way.

The many loss phenomena in the vocal tract are reviewed and displayed in
several forms. They are formalized in a consistent way to make it easy to
include them in the reflection model, and some quantitative data is
compiled. Frequency dependent losses, including those into the vocal
tract wall, are treated using z transforms. Aiso the z domain model of
lip radiation impedance of Laine (1982) is incorporated. Special atten-
tion is given to the ’jet loss’, related to the kinetic pressure drop.
This is used as a central element in simulating giottis as an integrai
part of the line model.

Automatic generation of noise at constrictions is theoretically reviewed.
With added support from a nozzle blowing experiment a practical procedure

is defined in detail.

Programs implementing the features are briefly described in context with
a surrounding system of service programs.
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0.2 INTRODUCTION

In modelling the speech production process within the vocal tract we can
already from its early days distinguish the uses of line analogs and
terminal analogs. The line analogs then form models that represent direct
spatial mappings of the speech organs. The line acts as a pseudo-statio—
nary filter that operates on a source signal fed to its input. From
circuit theory we can determine some suitable properties of that filter
as seen from its terminals. The interest is then centered on resonance
frequencies and bandwidths that define the speech formants. Here we
recognize the class of terminal analogs. These model the behaviour as
seen from the outer world, but their internal structure and operation is
only indirectly related to the vocal tract.

For vowel production one can get very far with the terminal analogs since
the natural process mainly offers a one-dimensional wave propagation
problem. With consonants the modelling process is much more complicated.
One reason is that in many sounds like nasais we have to account for
partly parallel paths of wave propagation. Another is that the sound
source may be located at several different places, as with fricative and
plosive sounds. Both involve that the transfer function will have zeroes
as well as poles. All these things can be handled in terminal analogs as
shown by Fant (1960). In practical synthesis work it is however rather
intricate to find lucid strategies to fabricate consonants, and especial-
ly the important transitions to neighbouring sounds. One consequence has
been that the theoretically well founded cascade formant synthesizer is
usually augmented with parallel branches. The approach with all formant
resonators in parallel is therefore aiso a useful alternative, especially
to produce good synthetic speech, replicated from an original.

At all times the line analog has been there in the background to supply
necessary theoretical and practical data, but it has not until more
recently been much used for direct synthesis, mainly because of its
higher cost in computations. The inherent merit of it is the direct
relation to the vocal tract which reflects in generally fewer and more
understandable control parameters, but the balancing drawback is that
these articulatory data are hard to measure, very few of them can be
reliably found from the speech wave only.

From available types of simulated lines this paper will deal with the so
called reflection type, working in the time domain. The phenomenon of
wave reflections is since generations familiar to radio and radar engi-
neers, using the Smith chart to establish standing wave ratios and re-
flection coefficients. Kelly and Lochbaum (1962) applied this concept in
making a vocal tract analog from a number of line segments having equal
length but different impedances. In the current search for better vocal
tract analogs this so-called °K-L’ model has attracted continued
interest, for instance by Maeda (1977), Degryse (1981), Strube (1982),
and Titze (1983).

SUMMARY, INTRODUCTION O - 3



Neighbour disciplines covering many features of the K-L model are linear
prediction and wave filter theory.

Linear prediction theory (Markel and Gray (1976)) has become very popular
because it offers a set of straightforward computational methods for
direct transformation between the domains of time waveforms, frequency
spectra, formant data, and, by analogy, pseudo area functions. This
theory in its basic form assumes a minimum-phase system although progress
is made toward generalizations in several respects. Connected with this
is filter implementations using lattice structures based on reflection
coefficients. These coefficients have a particularly simple relation to a
pseudo area function. The basic lattice makes all-pole filters only. it
can be augmented with taps to take care of zeroes as well, but then the
direct connection to the geometry of the vocal tract is lost.

Wave digital filter theory (Fettweis (1971)) treats discrete circuit ele-
ments and lines working from the concept of wave frequency which includes
the feature of forward and backward partial waves. Some topics of this
paper have a correspondence in this theory. In wave digital filter theory
line segments are for instance joined with ’adaptors’ that handle the
partial wave scattering. Also reactive elements can be implemented as
input impedances of lines having real terminations at the far end.

0.3 THE REFLECTION-TYPE LINE ANALOCG

The Kelly-Lochbaum model of the vocal tract can be seen as an uniaxial
set of equally long tubes, but with different cross-sectional areas. The
area changes at the tube joints define a set of reflection coefficients.
Several more recent improvements of this model are reviewed and some
novel tricks will be presented. The primary goal has been to develop a
flexible research tool for simulations of details in the speech produc-
tion, and a secondary to get hints on the construction of a practical
high-quality speech synthesizer.

The K-L approach is very attractive because it combines conceptual and
computational simplicity with a very close relation to the physical
world. It is of great interest that it is so easy to inspect the simu-
lated flows and pressures at will at any place and time. But the model
also has a number of weak points to be examined and cured.

First, in the reflection model the whole concept of frequency just is not
there, it has a pure time domain approach and it applies to an ideal
line. Of course a composite model with several segments does have fre-
quency properties, but these are not lucid from the derivation proper.
Frequency dependent elements can also be added using wave filter methods.
A terminologicailly slightly different approach that will be used here is
to interface elements formulated in the z domain as components in the

SUMMARY, INTRODUCTION O - 4



reflection coefficients.

Secondly, it does not properly cover losses in the vocal tract, which
among other things determine the resultant formant bandwidths. In the
original K-L approach losses were introduced as smail reductions of
partial wave amplitudes as the waves went through the tube sections.
Additional discrete losses were added at the ends of the line to model
energy absorption in the glottal and radiation impedances. Much of this
paper will deal with ways to step by step account for the many loss
mechanisms of the vocal tract. Some of those are crucial to make the
model work at all with narrow constrictions and closures.

in the third place the transmission line analogy as adopted from elec-
trical circuit theory does not inherently cover some inertial phenomena
that are of importance in the acoustical line. The moving air (as opposed
to electricity) has a nonzero density that will show inertial effects
different from those of an inductance. A well known consequence is the
Bernoulli effect: when air is accelerated in a constricted passage static
pressure power is converted into kinetic power which at instances may
create local downstream static underpressures. The supply pressure is
then proportional to the particle velocity squared. One topic here is how
to account for this. It is done with two different approaches, one with a
direct view on the Bernoulli equation, and one more indirect treating the
kinetic pressure drop as coming in a loss resistor.

Fourth, the model applies to a stationary line. In speech synthesis using
terminal analogs the formant resonators are derived from stationary
theory. This fact will usually not cause any serious problems. The
spurious signals generated by parameter changes can be minimized to
acceptable levels by use of proper design and preemphasis. This capita-
lizes on the resonators making up a filter that concentrates the spurious
signals to the same frequency band as the wanted signals. Experience
shows the situation to be more difficult with a line analog. The goal of
this study is a wideband analog for both vowel and fricative synthesis in
the same line. If such a line is excited with a lowpass filtered source
signal and several formants are moved by gradually changing the shape of
the line, then the high frequency band will easily be filled with
intolerable spurious signals. These now stand out because they are not
filtered away by the line and they are not masked by the wanted signal.
It becomes a problem when areas are updated at a lower rate than the
signal sampling frequency, something very desirable in order to economize
computations. It is found that this problem is eased by a dynamic model
given by Maeda (1977). Another interesting aspect of a dynamic model is
its capacity of parametric pumping, the excitation of the wave system
from temporal impedance changes in the line. This appears to be covered
by a competing dynamic model by Strube (1982). These two dynamic models
are reformalized and compared, and their correspondents in a fiow wave
analogy are shown, an alternative to the conventionally used pressure
wave analogy. Also a simplistic approximation to these models is presen-

SUMMARY, INTRODUCTION O - 5



ted, a method of dynamicaily adjusting the partial waves. A number of
tests on the various dynamic models are reported.

Finally it could be remarked that the model does not account for pumping
in the pseudo DC sense, namely that an area change implies a volume
change. The displaced amount of air will then invoke additional flows in
the system. This can be accounted for in an elementary way by connection
of external fiow generators.

A guiding principle has been that added features should appear as correc-
tions to the original expressions. The highlight is then that you can
devise solutions to individual partial problems and in an easy way
connect or disconnect them from the already existing construction.
Admittedly this principle has its dangers, one may have to validate that
the combination of two added features do not interact as to give
undesired artifacts.

Having the fundamental arsenal of tools it is relatively straight forward
to construct a complete vocal tract analog. Separate sections will deal
with loss magnitudes, a lip radiation impedance model, giottal wave
shaping to account for the source-filter interaction, and also automatic
noise generation.

No explicit modelling of the mechanics of the vocal tract or glottis has

been attempted here though it is directly feasible. The model is instead
supplied with forcing area functions.

SUMMARY, INTRODUCTION 0O - 6



Table 0.1 CONSTANTS AND VARIABLES

All quantities are in terms of Si units: kg, m, s, N, etc. Constants
pertaining to air in the vocal tract recomputed from Flanagan (1965):

) = 1.14 kg/m3=Nzs2/m* density at 37°C, 100% RH

c = 350 m/s speed of sound at 37°C, 100% RH

u = 1.86%10"° Ns/m? viscosity at 20°C, 100 kPa=kN/m?2

A = 22.9210°3 W/mxdeg thermal conductivity at 0°C

Cp = 1000 J7kg=deg thermal capacitivity at 0°C, 100 kPa
n = 1.4 adiabatic constant

Generally used variables:

1, d length, diamefer in m

A area in m?

P pressure in Pa=N/m?2 (1 kPa = 9.87 = 10 cm H,0)
U flow in m3/s

\Y; particle velocity in m/s

T sampling interval in s

z~ ! z—transform unit delay operator

Z, R acoustic impedance, resistance in Ns/m°

k reflection coefficient

Other variables are commented in the text.

Tab 0.1



1. BASIC TOOLS OF THE REFLECTION
TYPE LINE ANALOG

The scattering equations for the lossless line. Pressure and
flow analogies. Generalization into a dynamic line, existing
models and a simplistic proposal. Dynamic tests on the models.
Mode isolation. Practical considerations using the equations.
Branching the line model. Introducing series and shunt losses as
separate correction terms added to the lossless model. Account-
ing for frequency dependence of viscosity and heat conduction
losses. Inclusion of a source in the line, and application to
the kinetic pressure drop.

1.1 STATIC LINE MODEL

The reflection-type line analog described by Kelly and Lochbaum (18862),
the K-L model, is a very simple-minded yet effective way to simulate
wave propagation in the vocal tract. The tract model is set up as a
sequence of N uniform tubes of equal length I=c/2%t, where © is the
sample interval, and different areas A,. It stems from the general
solution to the wave equation that says that the pressures and flows
along the line can be put in terms of a forward going and a backward
going wave system. Within each cylinder each partial wave propagates
undisturbed, but when it reaches a joint it is split into two parts. One
part goes on in the same direction into the next tube and the other part
is reflected back into the old tube in the opposite direction.

To begin we look at the conventional formulation as shown in fig 1.1.

Ay kg A

Pla —> P2s —
< Qn <— Q2o

|

—> forward

> space

time

Fig 1.1. Tube joint with wave scattering. To the left physical
arrangement, to the right space-time diagram of partial waves.

Here we see a specific joint number | where the two tubes number | and 2
of areas A, and A, meet. The subscripts 1 and 2 then denote the space
dimension. The ’forward” direction is defined as the direction of rising
subscripts. A forward pressure wave p and a backward pressure wave q
travel across the joint. In a sampled system these are normally regarded
as impuise wave packages. Before they reach the joint they have the

Fig 1.1 BASIC TOOLS 1 - 1



magnitudes p;, and qp,. They meet at the joint and interact in some way,
and the result of that interaction is the waves p,, and q,, leaving the
joint. The time dimension is thus denoted by the a and b subscripts.

In classical literature the forward and backward waves are mostly
denoted by the same symbo! and superscripts '+’ and -’ to show the
direction. This tends to make the typography a bit involved. In the wave
filter literature one goes to the other extreme and marks them by the
subscripts oniy, ’al’, ’a2’ etc, so there is no direct indication as to
their direction. My notation here is hopefuliy a good compromise.

In each tube, the acoustic impedance, that is, the ratio of pressure P
to flow U is, with n=1, 2

Z, = pxc/A, Ns/m5 (1.11)
in the following | will frequently take the liberty to represent the
tubes alternatingly by their areas or their impedances, whichever gives

the simpier expressions.

At any time and piace the total pressure P is the sum of the actual
partial waves

P, = P, + Q, N/m? (1.12a)
Instead taking the difference between the partial waves, and excerting
this pressure on the local line impedance will give the net flow through
that tube section

U, = (p, - a,) 7 Z, m3/s (1.12b)
The probiem is now to find the scattering equations”, that is what are
the resultant p,, and q,;, expressed in the incident p,,, q,,, and the
areas or impedances involved.

This is resolved from two continuity criteria. The first is that the
total pressure in tube | must be the same as in tube 2, averaged over

the infinitesimal time of interaction

P' =p|u+qlb=P2 =p2b+q20 (1.13a)

The second continuity criterion is that the net flow aiso is the same in
both sections

U! = (p‘u - q‘b)/Zl = U2 = (pzb - Q2u)/22 (1.13b)
Using (1.11) this can also be written as

(p'u - qlb)*Al = (D2b - Q20)*A2 (1.13¢)

BASIC TOOLS 1 - 2



From (1.13a) and (1.13c) we solve the required quantities as

Pop = ( Z*Al *Pia + (AZ-A‘)*q2° Y / (A|+A2) (1.14a)
Qip = ( (A-Ay)=p,, + 2:A5 24y, ) / (A+A,)

Now a reflection coefficient is defined, equivalently in terms of areas
or impedances as

A-A, Z2,-Z
k]z = = k|2 = ~1 ... +1 (1.15)
A|+A2 22+Z|

The reflection coefficient obviously contains a convention as to the
direction. Also the different order of subscripts in the numerators
using areas or impedances should be noted. The relations that give the
resultant forward p, and backward q; are mostly put as

Pop = (|+k|2)#p‘u - k'z %Qgq (1.16a)
dip = k12 #pyq *+ (1-k 3)*ay,

or, with some rearrangement to minimize computations, the one multi-
plier lattice”

tio= ki(p 4 - ay,)
Qip = g + t)

These "scattering equations” is the result that is useful for direct
simulation of the total behaviour of the waves in a line composed from
several tubes. Starting such a procedure P, and q,, are given for all the
tubes at one instant of time. Working with equations (1.16) through ali
the joints we get an updated set of P, and q, valid for the next
sampling time interval.

BASIC TOOLS 1 - 3



1.2 FLOW WAVES

It is not always recognized that one can make an exactly analogous
derivation as above, but start with an alternate outset. Instead of the
pressure waves p and q, let us use flow waves, and call them r forward
and s backward. To get the local net pressures and flows the correspon-
dents to (1.12) will then be

P, = (r, + 8;) » Z, : N/m? (1.21)
U, = rp - s, m3/s

The continuity criteria (1.13a) and (1.13b) will then, with exactly the
same meaning come out as

P' = (rlq + S]b)*z‘ = P2 = (er 4+ 820)*22 (1.22)
U, = ryq = 8y =U; = 1y, - 8y,

Solving as above we get the flow scattering equations

U‘z = klz*(r|°+32a)
er = rlq - U|2 (1.23)
S|p = S2q * Uy2

ki as in (1.15) is identical with the one for the pressure wave
analogy. Whether to use the pressure waves p, q or the flow waves r, s
for simulation purposes is much an arbitrary choice. The only obvious
difference in the scattering equations for the two cases is that of a
few signs.

The flow wave representation may have an intuitive advantage as the
waves can be visudlized as puffs of air travelling along the line. Thus
the reflections at the joint can be pictorially represented as in fig
1.2.

Ma > 1-k
J t—> Tz
kyo —ky,

1k < Sz

Fig 1.2. Flow wave splitting at a tube joint.
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This diagram, oriented in the space domain, shows in a direct way the
physical splitting and merging of the partial waves. The forward wave
rg comes from the left in tube 1. When it reaches the joint it is split
into two parts. A fraction k,#r,, of it is reflected back to form a
partial component of the resulting backward wave s;,. The remainder of
the forward wave is (1-k,,)*r, and goes on into tube Z as a component
in ry,. Similarly the backward wave s,, is split when it reaches the
joint. The reflected portion of it will be the other component of r,,
and amounts to -k,,%s,,. The negative sign is because of the opposite
direction of the incident wave in relation to the direction k;, was
defined. This simplistic reasoning is possible with the flow waves that
involve transport of matter. In the case of pressure waves it does not
hold, the waves then transport a state of matter rather than matter
itself.

Alternatively the equations (1.23) inspire the equivalent flowchart of
fig 1.3, now oriented in the time domain.

+
Mo > 3IT —> [2p

$24> T gl > Sqq

Fig 1.3. Flow diagram of scattering equations.

it may also be interesting to note that one could use partial waves
pertaining to g mechanical analog rather than an acoustic, something |
have not seen applied to vocal tract simulation. These waves are then
velocity waves, let us call then v and w for the forward and backward
directions, or force waves, f and g.

Let us put up the initial definitions for total pressure and net flow
and compare them to our earlier correspondents (1.12) and (1.21) to have
this quartet:

pressure fiow
P= p+q (1.12) P = (r + 8) » pc/A (1.21)
U= (p-q) = Afeoc U= r - s

velocity force
P = (v + w) = pc (1.24) P=(f + g) /7 A (1.25)
U= (v - w) = A U= (f - g) / oc

Fig 1.3 BASIC TOOLS 1 -5



For these velocity and force wave analogies we can again derive the
scattering equations. We can however directly infer that the left pair
will give identical scatterings as (1.16) because the tube specific area
A is congruently placed in (1.12) and (1.24), while the constant ec
cancels out in the derivation. Similarly the right pair gives identical
scattering results, like (1.23).

Thus, on one side the pressure and the velocity analogies have identical
partial wave scatterings, and on the other, so have the filow and force
analogies. The grouping may seem a paradox.

The choice between pressure or velocity analogy is then immaterial, as
is the choice between flow or force, except for the scaling constant oc.
But conversely the choice between pressure or flow does have a signifi-
cance for the operation of the model, and these two cases will be
treated in parallei in the following.

One difference between the pressure and flow wave analogies that has an
interest in hardware implementations is in the numerical magnitude of
the partial waves. In speech the absolute value of total pressure P, the
net flow U, and the area A all have a range between zero and some
maximum value, maybe 2 kPa, 2 I/s, and 20 em?. Using (1.12) and (1.21)
with P, U, and A/¢c normalized to their maxima we can solve for the
corresponding partial wave amplitudes. Results for all combinations of
extreme A, P, and U can be summarized in a ’truth table’ like this:

pressure flow analogy
A/gc P U 2p 2q 2r 2s
1 1 1 2 0 2 0
1 1 0 1 1 1 1
1 0 1 1 -1 1 -1
1 a 0 0 0 0 0
0 1 1 o - 1 -1
0 1 a 1 1 0 0
0 0 1 @ - 1 -1
0 0 0 8] 0 0 0

The point to make is that with the flow analogy the partial waves always
have moderate numerical values, but with the pressure analogy there is a
risk of numerical overflow at the combination of a significant net flow
with a very smail area.

in fact, a point of major interest is how the models behave when the
area of a section is taken down to zerc (or usudlly, to avoid numerical
trouble, a very small value) in order to simulate a closure. To obtain
such a cutoff it is inevitable that the relative change in area from one
sample interval to the next is very substantial. This can generate
artifacts in the signals unless the model is dynamic, that is, in itself

accounts for area change with time.
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1.3 DYNAMIC LINE MODELS

The problem of developing a dynamic line analog has been addressed by
Ruiz (197 1), Maeda (1977), and Strube (1982). First the published Maeda
and Strube models will be outlined, using the present notation, as in fig
1.1,

The dynamic aspect enters the foilowing way. Simultaneously with the
waves reaching the joint then aiso the impedances (areas) of the tubes
change. Thus we have four impedances involved, one for each quadrant in
the time-space diagram.

The continuity argument of Maeda is that there is some pressure P and
flow U, both continuous at the crossover point. From this and the solu-
tion to the wave equation he finds

Pigq = (P + U2, )/2 (1.31)
Qrq = (P - UxZ,,)/2
Prp = (P + UxZ,,)/2
Q) = (P = UxZ,,)/2

These are quoted here in terms of the impedances Z rather than the agreas
A which in the foliowing will lead to simpler expressions of k. (1.31)
are actually analogous to (1.13), but with the partial waves weighted in
relation to the different impedances. Now, by the elimination of P and U
and solving for the resuiting waves the scattering equations will be

Pig + kpx(pyg=dyq) (1.32)
doq * kq*(plu—q2u)

Pop
qd1p

arranged here similarly to (1.16b). To get this anaiogy of form we must
however use two different reflection coefficients kp and kq, one for each
wave direction, where

kp

kq

(ZZG—Z]b)/(220+2|G)

Introducing the changes of impedance AZ=Z,,-Z,, and AZ,=Z,,-2Z,, will
bring out the difference in Maeda’s model compared to the static case,
simply as

Az,
Zlu+220
(1.34)
AZ'
kq = k12u -
Z|G+Z2U

BASIC TOOLS 1 - 7



where ko, is identical to the static reflection coefficient ki, of eq
(1.15) using the impedances Z,, and Z,, in effect before the impedance
change. With the notation selected here the expressions for kp and kq
come out simpler than in the Maeda paper, without other approximations
than the intrinsic one that Z is real and can be traded for A using
(1.11).

Strube (1982) questions this result and argues on physicai grounds that
the time average of pressure waves p, gq is continuous in space, and that
the space average of longitudinal momentum p/Z, q/Z is continuous in
time. This can then be put as

Piag + dyp = P2y * Qg4
Pr1a®Ajq * Q2q%A24q = Pop*Agp + A 1p*Ay,

This again leads to scattering eauations with two different reflection
coefficients

H

Pap = Pig * ky#P g + kp®dy, (1.35)
Qp = dog + kyxpq + koxdy,

but now with

A — Ay AA
k = ——— = kjgp -~ —m (1.36)
Ay + Agy Ay + Ayy
Ay = Agg AA,
-k, = = Kyjop ~
Ajp + Ayy Ap + Agy

kiop is the good old static reflection coefficient, but this time using
the areas after the area change.

The reader is now referred to table 1.1 which contains a comprehensive
list of alternatives for the scattering equations, static and dynamic.
They are written in a form to make mutual comparisons easy, which to
some extent implies that the form is not optimal for computer program-
ming without further rearrangement.

As a parallel set the table also lists the corresponding equations for

the flow wave analogy. The detailed derivations are somewhat tedious and
are omitted since they can be inferred from the examples above.
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Table 1.1. Summary of static and dynamic scattering equations for
pressure waves p, q, and flow waves r, s. The equation pairs are written
without abbreviations in a form to clearly show mutual differences
between cases.

I, 2, n are consecutive subscripts in space, a, b in time.

STATIC REFLECTION COEFFICIENT

A=A,  Zo-Z c
k,2=A' 2 227! z, = 22 (1.15)
|+A2 Z‘+22 An

CHANGE WITH TIME IN AREA AND IMPEDANCE
AA, = ALy - Agg AZ, = 2\, - 2,4 n=1,2

STATIC SCATTERING
PRESS p2p = Pi1a *+ (Pg-d2q) k2
dip = q2g (P1a=q2q) %k 2

(1.18)

+

FLOW Fop = Tyq — (r|q+920)*k|2 (1.23)

Sip = S2q * (Fyg+824) k2

DYNAMIC: Continuity in P and U

DYNAMIC SCATTERING (Maeda), time index a: eariy k, Z and A

PRESS P2p = Pjga
Aip = Q2q * (P1g=G2q)%k2g = (P1q—Q24)*AZ /(2 4+Z3,)

+

(P1a=Q2q0)%k124 + (P1g=Q24)#AZy/ (2 425 ,)

FLOW Fop = F1q — (r|a+320)*k|2u + (r10+32u)*AA2/(A,a+A20)
Sip = S2q * (Fg+83g)2k g + (r|g+8y4)#AA /(A +Ay,)

SINGLE TUBE WAVE DYNAMIC CORRECTION

PRESS p, = pg - (pg—0q4)=AA/2A,
gy = Q4 + (pa—qq)*AA/ZAb
FLOW ryp = rg = (rg+s,)=AZ/22Z
S, = 84 — (ro+8,)xAZ/2Z,

DYNAMIC: Continuity in PA and U/A, P/Z and UZ, or force and velocity

DYNAMIC SCATTERING (Strube), time index b: late k, A and Z

PRESS pop = P1g + (P1a=Q2q) %k 2p = (AA3p | o+AA2%q, ) /(A p+Asy)
ib = d2q + (P1g=d2q4)2k 2p = (AAjap | o+AA92q o) /(A p+Asy)
FLOW FTop = Fiq — (r|q+S2u)*k'2b - (AZ‘*TIQ—A22*820)/(Z|b+22b)
Sib = Sa2q * (Fyg*sgglek oy + (AZ 21| —~AZy28, )/ (Z | ,+2Z,y)

SINGLE TUBE WAVE DYNAMIC CORRECTION
PRESS pp, = pg - (pg+qq)=AA/2A,
Qp = dq — (pg+qg) =*AA/2A,

FLOW ry rq = (rgq—sq)=AZ/2Z,
S, = 84 + (rg—-sg)=AZ/27,

Tab 1.1



1.4 ALTERNATE APPROACH TO DYNAMIC MODELLING

in practise one would like to supply new data on areas or reflection
coefficients at a lower rate than the sampling frequency. Each time new
area data is then supplied in presence of signals there wiil be
disturbing transients in the partial waves. The following heuristic
approach was developed as a means to get rid of these transients.

Now then, instead of considering the tube joints at the time of reflec~
tions, let us focus on a specific tube. Here the net pressure and fiow
can be inferred from (1.12) or (1.21), though these are strictly valid
only just at the time of reflections. Let us suddenly change the area or
impedance of that tube. The continuity requirement posed is that the
pressure and flow remain unchanged in the section. We let some
"Maxwell’s demon’ adjust the existing forward and backward waves in
order to effect this continuity.

Since we are concerned with a single tube the space subscript is now
omitted. The net pressure and flow before the area change are

pressure wave analogy f low wave analogy
P, = Pg * 44 Py = (rg + s8,)%Z, (1.41)
Ug = (py, - q4)/Z, Uy, = rg = s,

After the area change the equations are all the same, except time sub-
script is b. Equating P =P, and U, =U, then gives

Py +d, (ro+s )2,
(pp—-ap)7Z, ra—Sq

(ry+sy)eZy (1.42)
b=Sb

Py*+a,
(pu_qo)/zu

from which the adjusted waves can be solved as

(r +s,)=A2/22, (1.43)
(r +s,)=AZ/2Z,

Py — (pgy—qq) *AA/2A, Ny
Qg + (pg—qq) *AA/Z2AY Sy

r
S

Pp
Qb

a ~

CI-

The procedure is then: whenever the area of a tube in the line analog is
changed, then with (1.43) compute a new pair of forward and backward
waves, for that tube only, from the existing waves and the area change.
Also, before the scattering equations are excecuted of course the
reflection coefficients at the ends of that tube have to be recomputed.
For the scattering computations the static equations (1.18) or (1.23)
are used.

Let me cail this procedure: adjustment for P-U continuity.
This adjustment and the static scattering equations give a fairly compli-

cated expression when brought together into a dynamic scattering equa-
tion. it is not clear that the procedure is computationally economic by
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comparison to the other dynamic models, but the point of it was that it
should not have to be used at every sampie interval.

With this wave adjustment procedure the dynamic model is split up into
two separate parts, one to take care of the area change, and one to take
care of the scattering. This is a simplification when programming a
computer. Waves are adjusted when new areas are suppilied, and there is no
need to save the old areas for the scattering computations eventualiy
fortcoming.

With both partial procedures the underlying requisite was that total
pressure P and net fiow U were continuous in time and space. A cliose
correspondent to this shouid be the dynamic scattering of Maeda that was
derived from the same basic criteria. Tests foliowing will show that the
Maeda model and the F-U adjustment indeed give very similor resuits.

The next invention is to try a different wave adjustment, this time with
a continuity requirement similar to the one posed by Strube, that of
continuity in P=A and U/A. (Not exactly like: we do not dispose of the
space dimension inside a single tube). Properly multiplying and dividing
with the area A, in (1.41) gives us

pressure wave analogy flow wave analogy
PoxA, = (p, + qg)xA, PoxA, = (r + s )xpc (1.44)
U,7A, = (p, - ag)/pc U7A, = (r, - s, )xZ, /pc

Again, after the area change the equations are all the same, except time
subscript is b. Equating P =A =P, xA, and U,/A_=U /A, and soliving for the
adjusted waves having subscripts b then gives

pb = pu - (Du*’qa)*AA/ZAb rb
ap a, - (pg+ay)=AA/2A, Sy

rg = (rg=sg)=AZ2/2Z, (1.45)
s, + (rg—-s,)=AZ/2Z,

Let me for simplicity call this: adjustment for f-v continuity (force
and velocity, regarding the dimensions of P=A and U/A).
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Fig 1.4. Layouts of model test situations.

a. Shutter test. Three tube sections, terminated without
reflections and externally fed with pseudo DC signals. Area of
middle tube is altered in steps.

b. Squeeze test. Eight section line terminated by open and short
circuits is gradually perturbed into a narrow and a wide half,
and back. The lossless line is pre-excited with a standing wave
on one of its resonance frequencies. To the right resonance
patterns in spectrogram style,

Flow. Amin .2

— U

Stet

| — Y1  Strube
___—V’-—”-———uf""L—"——‘ﬂ 1P

Fig 1.5. Output from shutter test of fig 1.4a. The area of the
middle tube is varied stepwise as shown in the top trace. Then
follow net flow and pressure in that tube for the static model,
for the P-U ad justment, the Maeda model, the f-v ad justment, and
the Strube model.

Fig 1.4, 1.5



1.5 TESTS ON THE SCATTERING EQUATIONS

We have now ten candidates for the scattering problem: pressure and flow
analogy, and for each of those the static solution, two dynamic, and two
approximately corresponding wave adjustment proposals. Neediess to say
they all give identical results with a line that is time invariant. But
with a time varying line the models do behave differently. Also the
apparent simplicity of the reflection model is indeed quite treacherous.
| have tried the models in a number of different tests and will now
describe three of those that give quite different results, this to illu-
minate the puzzling complexity of the choice. They put hard stress on the
models as compared to normal speech synthesis situations, but hopefully
accentuate the differences. The topic of model selection will also be
revisited later in connection with simulation of the glottis.

1.51 SHUTTER TEST

The first is the ’'shutter test’ where a single tube section is stepwise
varied and the signal is pseudo DC. The purpose is to show what happens
when area is changed in large relative steps, as happens close to an area
cutoff. A line made of three tubes as in fig 1.4a is simulated. The end
tubes constantly have unit area and are externally excited. A constant
forward wave is injected into tube | and a slowly varying ramp for the
backward wave enters tube 3. The particular design of these inputs makes
the test cover the range from zero static pressure and unit net flow up
to zero fiow and unit pressure. The waves leaving the end tubes are
neglected, the simulation thus covers a reflection free termination at
both ends of the three tube array.

Some resuits are shown as functions of time in figure 1.5 . The upper
trace of the figure shows the area of the middle ’shutter’ tube. To give
clearly visible effects the shutter area is varied abruptly in large
steps a number of times. The area variation is from unit area, as in the
abutting end sections, to 0.2 of this. The total pressures and net flows
in the same tube are derived from sums and differences as in eqs (1.21)
and are shown for the static model, the Maeda and Strube models, and for
the proposed wave adjustment models.

An initial remark is that for each dynamic model the resulting pressures
and flows come out the same, either the pressure or the flow analogy is
used, though the partial waves do not.

For the static modei, when the area of the middle tube is suddenly made
smaller, we see transients in the line. These transients gradually die
out as the waves adapt to the new situation of areas and reflection
coefficients. The time constant in the decay of the transients is actual-
ly inversely proportional to the area of tube 2. If this area is very
small it will take a long time before the waves trapped inside it manage
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to get out through the barriers of near total reflection at its ends.
Similar transients come in the adjacent tubes (not shown). When the
middle area is switched back to unit size another transient is generated
in the neighbour tubes. This one lasts only one time siot, after that it
disappears without reflections out through the ends of the tube array.

A specific observation in this test is that after the transients have
died out the pressure and flow in the shutter are the same as in its
neighbours, and also the same as they wouid have been without any area
change. My wave adjustment scheme for P-U continuity was designed to give
precisely this eauilibrium situation immediately on the area change. The
Maeda model, though formally different, in this particular test happens
to give exactly the same resuit. The Strube model on the other hand gives
even stronger transients than the static one, and so does the adjustment
for f-v continuity (but not the same!). This does not disqualify these
models as such, but it suggests them to be particularly sensitive to
undersampling of the area parameter data.

The static flow wave model, the Maeda, and the continuous P-U model have
the idiosyncrasy that when area is taken towards zero the net flow is not
interrupted. This is the consequence of continuity of filow and is mathe-
maticaily all right, a finite flow can well go though an infinite impe-
dance. But this would make a practical system useless to model a cutoff.
Later we will see that this disastrous misbehaviour can be helped once
resistive losses are accounted for.

1.52 UNIFORM EXPANSION TEST

The next two tests dre staged in an eight section system, terminated at
both ends with a reflection coefficient of -1, that is, closed in one
(the glottal) end, and open, acoustically short—circuit, in the other.
Initially the line is set up with an odd number of quarter periods of
equal forward and backward waves. We thus simulate a lossless resonator

tube, pre—excited to operate at one, but only one of its four resonances.

Test number two is to let this pre—excited system have tubes of equal
areas that uniformly expand exponentially with time. Since areas are
equal all reflection coefficients are zero except at the ends. The
initially set up waves will oscillate back and forth indefinitely in a
standing wave pattern without attenuation. It is fairly easy to see how a
physical line would behave in this situation. The energy per unit length
in one of its segments is composed from the kinetic part Ek=L#U2/2 and
the static part ES=C*P2/2 and, since L=p/A and C=A/¢oc? it is straightfor—
ward to find the changes dE/dA of kinetic and static energies with area.
Putting both these changes to be zero, that is, assuming no energy inter—
change with the walls, and no change in standing wave pattern (same
relation between static and kinetic energies) one immediately arrives at
dU/U=dA/2A and dP/P=~dA/2A. ldeally then with an exponentially increasing
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area we would expect the flow to rise and the pressure to fall exponen-
tially, but with half the exponent. This special resuit aiso conforms
with the general theory of ’adiabatic’ perturbations elaborated by Jospa
(1977).

In the uniform expansion test all the dynamic models behave very ciosely
like this but none identical to any other. | find this remarkable thin-
king of their difference in the other tests. For instance an area
increase of 57 per sample interval, repeated 128 times (a total area
growth more than 500 times) gives quite insignificant differences in
amplitude and phase, to the order of a few percent.

Conversely, the static model does not work at all. In this nothing will
happen to the partial waves because of the expansion. Thus in the
pressure analogy the pressure is constant while the flow increases with
the area, and in the flow analogy the filow is constant while the
pressure is inversely proportional to area (cf eas (1.12) and (1.21)).

1.53 SQUEEZE TEST

The third test could be called the ’squeeze test’. It uses the same
lossless, pre-excited eight tube line. Initially all sections have unit
area. During the test the area function is gradually perturbed to become
narrow at the glottis end and wide at the mouth end, and then back to the
original shape again. The four segments at the ’glottis’ end are uni-
formly made narrower and the other four correspondingly wider so that the
total volume is constant. Fig 1.4b shows the area function and correspon-
ding formant trajectories in a schematic form. The area change with time
is shaped as a biassed inverted cosine period over a time span of 256
samples. At maximal perturbation one would like to have the narrowest
tube collapse to zero area. We cannot go all that way because the models
break down from arithmetic reasons. Instead the minimum area at maximum
perturbation was arbitrarily selected as 0.02.

In a milder form of this test, the ’smooth squeeze’ the area was per-
turbed as eight points on a half cosine period. This gives other formant
trajectories, but apart from this the results were similar.

The squeeze test illustrates a somewhat academic theorem not generally
thought of in speech work. It applies to linear multi-mode resonant
systems like strings, membranes, cavities, that are subject to slow,
continuous changes of shape, and without external energy exchange,
'adiabatic changes’. It can be named the principle of mode isolation, a
consequence of the resonance modes being orthogonal:

When a resonator, freely oscillating in a resonant mode, is slowly
perturbed, the oscillating energy is confined to that same mode.
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Fig 1.6. Outputs from squeeze tests of fig 1.4b.

a. Lline was pre-excited with FIl only. Top trace is area
of sections 4-8. Then follow net flows in section 8 as they
develop in time for the different models as indicated. To the
right are Fourier spectra of overlapping 48-sample intervals,
using raised cosine (Hanning) window. Consecutive spectra are
displaced 24 samples in time and 20 dB in level.

The static model gives very different waveforms for the flow and
pressure partial wave analogies (two top waveforms), and in both
cases energy is transferred to F2. The four dynamic models all
keep the energy in F1, and each gives same waveform with either
flow or pressure partial waves.

Fig 1.6a

P-U Stat Stat A8
— Flow

Mae

Str

—]

-
L}

Pressure partial vaves




area

Section B filow

Time ———>

Figl.6b. Sameasfig l.6a, but with area function undersampled by
a factor of 7 as seen from the notches in the area trace at top.

All models show energy leakage to higher formants, but the P-U

ad justment and the Maeda model generally less than the others.
Details vary considerably depending on the undersampling factor.

Fig 1.6b
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The frequency of this mode may well change as a consequence of the
perturbation, the point is that the oscillations of the mode considered
this way it is obviously required that the system is linear, and that
perturbations are slow enough that they are insignificant within the
period of one oscillation. Otherwise harmonics will be generated that
will excite other modes as well. Conversely this principle couid work as
a test on physical accuracy in the models.

Fig 1.6 shows results from the ’squeeze’ test on the static and all the
dynamic models, for pressure wave and flow wave analogy. Time waveforms
shown are the flows in tube 8, supplemented with successive Fourier
spectra, weighted with a Hanning window. It is obvious from the spectra
that all the dynamic models adhere to the mode isolation principle, and
that the static model does not. Also the static model again differs
greatly in the pressure and flow analogies, while the dynamic models are
independent of type of analogy.

During the perturbation the first two formant frequencies approach until
they differ only a small fraction of the total frequency range. Still the
dynamic models manage to keep the neighbour modes 'uncontaminated’ from
the excited one. The corresponding holds also when the system is pre-
excited to its higher modes. (In the limit of a total closure in the
narrow half line the formants would have pairwise coincided, making mode
isolation impossible.)

The physically reasonable situation at maximal perturbation would be
that virtually all energy is squeezed out from the narrow half line into
the wide one. Energy conservation then requires the mouth fiow to be
twice its unperturbed value, that is seen from E~LU2/2=0lU2/2A (more
precisely: integrated over the line and weighted with a similar sinusoi-
dal amplitude function) where length | is halved and area A is doubled
during the perturbation. The Strube model and the model of f-v continu-
ity adjustment are the only ones to manage this aspect correctly. The
Maeda model and the P-U adjustment give little change in the mouth flow
amplitude (as opposed to the uniform expansion test), they generally are
under—sensitive to the area perturbation. This appears to illustrate the
importance of conserving longitudinal momentum to insure the proper
longitudinal transport of energy.

Parenthetically | could mention a similar experiment that failed in mode
isolation. It was done on a cascade of four second order formant resona-
tors implemented as recursive z transform filters, a classical formant
speech synthesizer, fig 1.7. The lossless resonators were artificially
pre—excited for stationary oscillation on Fi1, and then the formant fre-
quencies were perturbed. The output gets strong ’leakage’ of signal into
F2 either it is F1 or F2 that is perturbed. The reason is that the
filters are derived from assumptions of a static system, so all kinds of
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Output

artifacts can and will occur when the filter coefficients are changed in
presence of a signal. There is also an inherent asymmetry in the system
since the signal goes in one direction only. The first resonator is
isolated from what happens in the later circuits, but the opposite is not
true.

This raises the philosophical conclusion that it is not feasible to
develop a dynamic version of the classical cascaded formant resonator
filter. It is additionally required that a feedback path is included, a
feature inherent in wave filters, of which the line analog is an example.

But the cascade synthesizer has proven useful for so many years, then why
so much fuss about dynamics with the line model? The main motives are:

In a formant syntesizer the spurious signals are filtered so that they
are effectively masked by the wanted signal. But in a line model spurious
signals can excite formants outside the wanted frequency band. The line
is no lowpass filter uniess explicitly engineered that way.

Relative formant frequency changes are aimost always moderate. Specifi—
cally, formants never approach zero frequency, in practical synthesis
work you wouid not let them do that, and in the real vocal tract the
finite wall mass will prevent it from happening. But in a line analog
relative area changes can not be moderate when you want to approach
cutoff.

Time —>

| F1|{Fa|{F2}{F3]—

w

Fig 1.7. A parallel to the squeeze test, but using a classical
cascade formant filter, F-pattern at top. A greater part of
the energy is transferred to F2. :
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1.54 UNDERSAMPLING THE AREA FUNCTION

For computational economy one would like to update areas and reflection
coefficients at intervals much longer than the sampling interval, to
undersample the area function. The correspondent with formant and LPC
synthesis, to undersample formant and bandwidth data, has always been
practised successfully. Theoretically it is of course not permissible at
all, but it is motivated from these data being pseudo stationary. There
will however be artifacts in the synthesis resuilts, like clicks or
harshness. The classical way to minimize the artifacts applies to voiced
sounds only, that is to update formant data pitch synchronously, when the
oscillating energy is minimum, just before the major excitation at glot-
tal closure. This trick is just as applicable to the line analog, but can
hardly be applied when most needed, as when synthesizing consonantal
transitions.

To fill in the picture fig 1.6b shows what happens in the squeeze test
when areas are updated every seven sample intervals, and in correspon-
dingly larger steps. It is obvious how the waveforms are severly distor—
ted.

From several runs of the squeeze test with area undersampling my general
conclusions, not very revolutioning, are:

The most prominent distortions and accompanying mode leakages occur when
the ratio of undersampling coincides with low muitiples or sub-multiples
of the number of line segments; the artifacts then tend to accumulate in
phase.

The Maeda model and the adjustment for continuous P-U give typically 10
dB lower mode leakage than the other models. These other, including the
static, do not show very significant mutual differences in this respect.

Also it holds that the static model gives very different waveforms for

the flow and the pressure partial wave analogy. Each of the dynamic
models give essentially the same result with either type of analogy.
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1.55 TEST CONCLUSIONS

This tends to resolve the competition between the different dynamic
models:

For a very rapidly changing area, like the giottis, then area under-
sampling is out of question, and the Strube model or the f-v adjustment
would be appropriate. These models appear to account correctly for the
dynamic effects on momentary wave amplitudes.

For the slower area changes in the vocal tract area undersampling can be
used with some care, and then the Maeda model or the P~U adjustment are
preferred to minimize spurious transients. A consequence wiill then be
that the dynamic effects will be under-represented. More specifically,
the changes in formant bandwidths due to dynamic area change will not be
as large as they should.

Probably this is not very important, as was shown with a simple resonator
example by Fant ( 1880). Concurrent tests by Meyer and Strube ( 1984) also
seem to indicate the effect to be perceptually marginal. For the band-
width contribution to be significant the relative area change must be
fast, something that can happen only with small areas close to cutoff,
the typical situation is the release of an occlusion. A balancing facter
is that when the area is small the laminar and, perhaps even more, the
jet losses are large. The point is, that for the bandwith term from the
area change to overrule that of the resistive loss there is very little
time available, up to a few milliseconds.
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1.6 HANDLING THE SCATTERING EQUATIONS

Though the scattering equations are simple enough the use of them for
simulation purposes offers several pitfalls to the programmer. It would
be worthwhile to contemplate the detailed wave flow diagram in fig 1.8
showing the partial waves as little packages moving in space and time.

Here | have elected to mark the time scale in a time unit equal to the
sample interval. But at the speed of sound the length of each tube
corresponds to a travel time being only half of the sample interval. That
is why the time axis is marked diso in ’half units’. In the literature it
happens that this ’half unit’ is denoted by t. The diagram shows all
possible partial waves that can follow from the spreading of a single
input pulse, injected at the start of the diagram.

The following features could be noted:

It might be possible to inject another input impulse half a sample inter-
val after the original one. This new one would then spread into a similar
pattern completely interlaced with the one shown. But nowhere would then
these two patterns interact. Thus there is the theoretical possibility to
handle two entirely independent wave systems simuitaneously in the same
line analog, but this appears to be of academic interest only.

Let us then scrap that possibility and work only with the causally con-
nected waves shown. In each line in the diagram only half of the joints
are involved, alternatingly the odd and the even ones. This should be
taken care of in writing computer programs so that half of the computer
power is not wasted on calculating zeroes. One way of doing this is to
arrange the set of computations for one sample interval into two passes.
The first pass handles the even numbered joints computing the odd num-
bered forward waves and the even backward waves. The second pass goes
through the odd joints to make the even forward and the odd backward
waves.

In a specific tube, at each instant of time there is either a forward
wave or a backward wave, not the two simuitaneously. Compare the basic
expressions (1.21) giving the net pressure and flow. These are strictly
valid only at those time instants the waves meet at the joints.

A consequence is that the computations of the scattering equations can be

made 'in place’. The results of one pass can be written back into their
proper storage locations where the old values will no more be needed.
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Fig 1.8. Space time diagram of the computation sequence in
the line analog. Waves reach the output (here joint 6) only at
integer multiples of the sampling interval.
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Conceivably, area changes can be done at twice the nominal sampling rate.
In practice this seems to be of no particular interest, rather a burden.
Also, because of the sampling theorem it would not make sense to update
areas more often than the sampling rate. Mostly one would instead like to
update areas at some multiple of the sampling interval, not least in
order to save computer time. Recomputation of areas and reflection coef-
ficients generally takes more computer capacity than the scattering
equations.

This has a paradoxal consequence: the dynamic scattering equations are
used in only one of the sample interval passes, they will never be
applied to more than every second joint. It may seem puzzling that, for
instance, when changing the middie tube in the three tube shutter test,
the dynamic correction is applied only to one end of that tube. But when
the waves reach the other end half ¢ sample interval later, then area
conditions are static.

Similarly, when applying the novel wave adjustment scheme, only haif of
the forward waves and half of the backward waves need be adjusted. The
others will never more enter the scattering equations.

It may be worth pointing out that neither dynamic model accounts for the

pseudo DC pumping effect of an area change, that is the incremental flow
from the volume change.
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1.7 BRANCHING THE LINE

To simulate a nasal tract connected to the vocal tract by a velar valve
we must have a way to branch the single line into two. There exist
equivalent solutions to this in digital wave filter theory (Fettweis
(1971), Fettweis and Meerkotter (1975)) comprising so calied muiti-port
adaptors. To stay within limits of generality and to keep down the number
of notations we however go on independently with direct reference to the
paragraphs above.

Start by looking at the single joint that was treated in eq (1.23) and
illustrated in fig 1.2.

Now look only at tube 1, how is the reflected wave s, composed? One part
of it is the k,, fraction of the ’own’ incident wave r;. The other part
of it is the (1+k,,) fraction of whatever wave arrives at the other side
of the joint, here s,.

it does not make any difference to what happens in tube 1 if the other
tube is composed of two compartments that together have the area A,. Let
us then draw it as a three-way junction, fig 1.9aq.

Of course you will have to make a decision on what is ”forward” and what
is backward” in the different branches, and then later have that
decision in mind.

Using (1.15) and the fact that tube | meets the area A,+A,; gives us
The same reasoning applied when looking into tubes 2 and 3 renders

Koy = (Ay = (A[+A3)) /7 (A, + A, + Ay) (1.71b)
Kae = (Ay = (A[+A))) /7 (A, + A, + Ay) (1.71¢)

Observe that the k., here are all defined for waves going toward the
joint. These may be "forward” or "backward” waves, not necessarily one
kind only. In passing we note that any one of the three reflection
coefficients can easily be eliminated since

ki otk ks, = -1 (1.72)

and proceed to draw a graph of the waves and their splitting as in fig
1.9b.
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Fig 1.9. Left, layout, right, wave scattering in a three-way joint.

The equations of the three-tube joint can then be found by inspection
and arranged as

Uu=r; + 8; + 8,

Frg = ry + s3 + ky,»u (1.73)
S, = 85 + 83 + k, »u

r3 = ry + 85 + kg, *u

with u being the total partial wave influx to the branching point (not
the net influx which is zero).

With the pressure wave analogy it is not so simple to get the scattering
correctly from a flow diagram. The safe thing is to start from a corres-
pondent to (1.13), the total pressure in all branches is the same, and
the sum of net flows is zero. These equations can eventually be solved as

t = klx#pl + kzx*qz + kax#qs
Py = p; + Q, + t

using the k., of (1.71).

In wave filter terminology these scatterings are called three—port
'series adaptors’ (1.73), and ’parallel adaptors’ (1.74).
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1.8 SERIES LOSS CORRECTION

The ciassical way to introduce losses used by Kelly-Lochbaum is to
attenuate each partial wave by a small fraction each time it passes
through a tube (though they appear to have done it with the backward
waves only). This is ailso generally combined with losses at both ends of
the line. The end reflection coefficients are set to a little less than
unit magnitude. Then at the glottis end for instance, in each cycle there
will be a small backward flow that will never enter the line again, it is
lost for good. This works fine as a first approximation, but there are
numerous things in the real vocal tract that can not be modelled properly
this way.

As an example imagine the following case. The lips are shut to give a
total reflection back into the vocal tract. All r, and s, inside the
tract are equal and non-zero. This corresponds to the mouth being charged
with a constant DC pressure but with no net flow. Should the losses be
simulated by indiscriminate attenuation of the partial waves in such
proportions as to give reasonable formant bandwidths, then the DC pres-
sure would be lost in a fraction of a second. The modelied tract would
appear to be made of felt rather than gas tight flesh.

Obviously we would like the line model to handle the losses in such a way
that we can trace them back to the real tract and quantify them with a
reasonable accuracy.

The first trick is now to augment the K-L model with series resistances
in the line, not in baianced combinations of series and shunt resistances
as with ideal lines. The absence of a shunt will insure an “airtight”
line.

At joint n between two line segments of impedances Z, and Z, we insert a
loss resistance R, fig 1.10.

Fig 1.10. Series loss resistance between two sections.

Instead of the old reflection coefficient k;, we introduce the pair of a
“forward reflection” coefficient k., and a "backward reflection” coef-
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ficient kg5, though still defined in the forward direction. In accor-
dance with eq (1.15) we get, now omitting the ’12’ subscript

k, = ((R+Z,) = Z,) / (R+Z,+Z,) (1.81)
ky = (Z, = (Z;+R)) / (R+Z,+Z;)
> 1-
Ma ' s> rp
— ke (‘J_‘_D—
Sip < .
1+k, < $2¢

Fig 1.11. Scattering with series loss resistance.

How the waves dare split is seen in the graph of fig 1.11, from which the
new scattering equations can be written by inspection as

(1-k d#r, - Kk
k

s *So (1.82)
xr; + (l+kg)=s,

ra
8

r

Now we introduce a loss factor D as the ratio of R to the sum of the

surrounding line impedances:
D=R/ (Z, + Z,) (1.83)

This definition is in line with the classical one for the contribution to
the attenuation constant by a series element in a line, compare fig 2.1.
it should be noted, however, that we work here with a resistance, not a
specific resistance per unit length. Inserting this and (1.15) into
(1.81) gives ’

(k+D) 7/ (1+D) (1.84)
(k-D) 7 (1+D)

k
k

s

which, used in eqs (1.82), gives the desired series loss corrected scat-
tering equations

ry, - (k*(r|+sz)+D*(r,—sz))/(l+D) (1.85)
sy + (k=(r +s,)+Dx(r -s,))/(1+D)

Fo
S

Again, to bring out more clearly the effect of the series loss we rewrite
(1.85) like the formula for the iossless case (1.23), but augmented with
a series loss correction term, and get
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ro = rp = (ry+sy)uk — (Cl=k)=r;=Cl+k)=s,)=D/(1+D) (1.86)
S) = 8y + (ry+sy)xk + (C(l1=k)er —(1+k)=s,)=D/(1+D)

The loss term is sensitive to a weighted difference between the forward
and backward waves, this corroborates it represents a loss due to the net
flow rather than the pressure. The weighting performed by the factors
1+-k accounts for the area change over the joint. The loss term enters
the two waves of (1.86) with equal magnitude but opposite sign. Thus the
sum of the computed waves r, and s, is equal to the sum of the input
waves r, and s,, no flow or matter is lost at the joint. What happens
with the series loss is then that the balance between the forward and
backward waves is adjusted as compared to the lossless case.

The lossy scattering for the pressure wave analogy can be found as

P2
q,

P; + (py-aqy)xk = (py;=q,)=(1+k)=D/(1+D) (1.87)
dy; + (py-ay)=k + (py—-qy)x(1-k)=D/(1+D)

also this one written as the regular static lossless formula.(1.16) plus
a loss correction term.
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1.9 SHUNT LOSS CORRECTION

Let us now in a corresponding dual manner introduce a shunt loss conduc-
tance element G into the joint. Let that element constitute the third
branch in a three way joint as in fig 1.12.

T 1/G )

Fig 1.12. Shunt loss conductance G as a branch.

Let us also define a shunt loss coefficient E in analogy to the classical
definition in fig 2.1, E=GZ/2 giving G=2%xE/Z=2=E»Y. Furthermore select a
norm line admittance Y such that it represents the mean admittance of the
joining tubes. We then have

G = 2:E/Z = E/Z, + E/2Z, (1.91a)
and using (1.11) we turn it into
prcxG = Ex(A;+Ay) = A, (1.91b)

This represents the area A, in the loss branch of the three-way joint.
its magnitude is a froction E of the sum of the joining line areas.
Through this (mostly smail) area energy will leadk out as a forward wave
ry. This energy is lost, so there will be no backward wave sj.

Inserting this into the expressions (1.71) for the reflection coef-
ficients we get

A] "Az"E* (A'+A2 )

(k,,-E)/(1+E) (1.92)

kix =
A| +A2+E’:‘ (A]+A2)

(E-1)/7C1+E)

I'<2x
k3x

where k;, is the usual reflection coefficient for the main path as in
(1.15). Going on inserting (1.92) into the scattering equations (1.73),
omitting the subscript on k;» and remembering that s,=0 we get
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ry =ty — ka(r +8,) = (1-k)#(r +8,)¢E/(1+E) £ (1.93)

—
[

= s, + k’:(r|+sz) - (l+k)m(r,+s2)aE/(l+E)
rg = 2 «(r +s,)=E/(1+E)

These are put in a form to show identity with the plain two tube joint
equations (1.23) ocugmented with a shunt loss term. The equations clearly
show how the loss flow ry is tapped off from r, and s, in fractions
balanced by k.

Again, for the pressure wave analogy, one can similarly derive a shunt
loss corrected version to compdare to the lossless (1.18):

Py = Py + (p;=ay)zk — (p,#(1+k)—-g,=(1-k) ) %E/(14E) (1.94)
a, = a, + (p;=a,)xk — (p;*x(1+k)=g,=(1-k))=E/(14E)
Py = (p eCl+k)=aq,x(1-k)) / (1+E)

The scattering equations for flow and pressure partial waves, with cor-
rections individually for series and shunt losses, have now been outlined
as (1.86), (1.87), (1.83), and (1.94). These are shown collected together
in table 1.2.

The series and shunt loss corrections can be applied additively. For
instance, setting D=E (as for an ideal line) such additive correction
gives back the original equations (1.16) and (1.23), but uniformiy scaled
down by the factor (1-D)/(1+D). This then reminds of the small attenua-
tion to the partial waves applied by Kelly and Lochbaum in their original
model.

There are many alternative ways to write the scattering equations. One
that shows the quartet of lossy equation pairs in terms of reflection
coefficients, rescaled by the loss factor like in expression (1.84) is
also given in table 1.2. From that it is obvious how keeping track of
pressure and flow analogies, and series and shunt losses, is one big
excercise in putting the correct signs at the correct places.
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Table 1.2. Static scattering equations, separately accounting for
series and shunt losses, for pressure and flow partial wave
analogies.

SCATTERING WITH SERIES LOSS CORRECTION. D = R/(Z1+22)
PRESS p, = p; + (p;=a)%k = (p;=qy)%(1+k)2D/(14D) (1
q, a, + (D|-Q2)*k + (D]’Q2)*(l"k)*D/(]+D)

FLOW ro rp = (ry+splek = (ryn(t=k)=s,2(1+k))=«D/7(1+D) (1
sy = 8y + (ry+so)=xk + (r =(l1-k)=s,=(1+k))=D/(1+D)

SCATTERING WITH SHUNT LOSS CORRECTION. E = G/(1/21+1/22)

PRESS Py = Py + (py=qz)xk = (p=(1+k)+qgo2(1=k))=E/(1+E) (]
g4y = g9 + (py—qgylxk - (p=(i+k)+gy=(1-k))=E/(1+E)

FLOW ro =1 — (ry+sy)xk = (r +s5)=(1-k)=E/(1+E) (1
Sy = 8y + (ry+ss)xk = (r +s,)=(1+k)2E/(1+E)

LOSSY SCATTERING, ALTERNATE FORM

PRESS FLOW
SERIES LOSS
k=D k-D k+D k-D
P2 = P11 * 700%P T o792 f22 0 = 7" T T2
k+D k+D k+D k=D
d4y = ¢go + ‘{:E*Dl - I+D*q2 S, = sy + m’nr] + -]—;Bx-.zsz
SHUNT LOSS
k-E k+E k+E k+E
P2 = Py * ']TE*Pl = I+E*q2 rp = ry - ]—+E-#r| - HE*sQ
k-E k+E k-E k-E
Qy = q2 *+ HE*Dl - T;'E’*‘qz 8) = 8 + HE“I + Efasz

Tab 1.2

.87)

.86)

.84)

.93)



1.10 MODELLING FREQUENCY DEPENDENCE

Viscous and heat conduction loss resistances exhibit a proportionality to
the square root of frequency. One can account for that dependence doing a
trick with the loss factor D (or E). Instead of having it as a constant,
iet us devise a suitable expression using the unit deiay operator z. One
such expression that is useful is for instance

D = D #(z-b)/(z-qa) (1.101)

where D, is a reference value of the loss factor that has to be deter-
mined from the actuai conditions of area etc and corrected in reiation to
the magnitude of (z-b)/(z-a) at some reference frequency.

Fig 1.13 shows the real and imaginary parts of (1.101) for two different
sets of the parameters a and b. These have been selected to give a
reasonable approximation to square root variation in the real part as a
function of frequency. The set in fig 1.13a could be used to model
viscous losses in their principal frequency range of interest between .5
and 4 kHz.

Using fig 1.13b for a shunt conductance the parameter b=1 is selected to
give infinite impedance at zero frequency. This would be necessary to
avoid DC losses if used for shunt loss modelling (of heat conduction
loss), but of course will give a quantitatively poor approximation at low
frequencies.

To install this loss model into the line analog let us take the following
example covering viscous series losses. in the scattering equations
(1.86) the losses are represented by the last term which can be put as

b
y

(l=-k)=r, = (l+k)=s, (1.102a)
x = D/7C1+D) (1.102b)

x is then the input quantity and y is the frequency dependent resuilt to
use as a correction in (1.86). Inserting (1.101) into (1.102b) and
solving for y renders

y = (x = bexxz~1)sD_/(1+D,) + yxz~'w(a+bsD_)/(1+D,)  (1.103)
Thus we can find the current vailue of y from the one sample interval

delayed y, that is, y*z", and from the current and the delayed values of
x. The procedure obviously requires extra storage for the delayed x and y.
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Fig 1.13.Two z-domain approximations to square root behaviour of
a resistance in the frequency domain.

a. Approximation covering the upper part of the audio band.

b. Approximation with the added requirement of zero resistance or
conductance at zero frequency. This alternative misbehaves for
low frequencies and then becomes reactive.



1.11 INSERTION OF A PRESSURE GENERATOR

Later we will want to inject a signal into the line at some point other
than its ends, especially in order to achieve noise generation at con-
stricted passages. To that end let us briefly see how this will come out
as a modification to the scattering equations.

Setting out with the continuity criteria (1.13) we insert a pressure
source P, between tubes 1 and 2 such that the total pressure undergoes a
sudden jump. (1.13a) is then modified into

PI + P = P2 (1.110)

while (1.13b,c) remain unchanged. Solving for p,, and q,, as before the
scattering equations (1.16) will come out with additional terms as

Pop = (]+k|2)*pla ad k‘z *qzu + (]+k‘2)*Pe/2 (1.111)
Qip = klz #Pigq *t (I—klz)*qzo - (]’k]z)*Pe/z

This is easy to visualize directly. The inserted pressure P, is split
into two parts, balanced by the reflection coefficient k|,. One part goes
on in the forward direction with a positive sign, the other goes with a
negative sign in the backward direction. In case the two tubes are equal,
then k,, is zero and the injected waves become equal in magnitude, namely
half the inserted P,.

if we instead consider the flow analogy doing exactly the same derivation
from (1.22) the modified resulting correspondent to (1.23) will be

Fop = rlq - k|2*(rlu+82q) + Pe/(Z|+22) (1.112)
Sip = Soq * kyoxlr g+8,,) = P /(Z,+Z,)

As usual with the flow analogy this is perhaps even more tractable to the
mind. The partial flow waves induced by the P. generator are equal in
magnitude and opposite in sign, conservation of matter and no hole in the
wail. The magnitudes of the partial waves are as couid be immediately
expected from the aggregate of the pressure generator and the impedances
of the two tubes.
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1.12 KINETIC PRESSURE DROP

A weakness in any linear line model is that it fails to account for the
pressure changes from accelerations at constrictions in the line, often
referred to as the Bernoulli effect or the kinetic pressure drop. The
basic reason for this is that unlike electricity for which line theory
was developed, in acoustics the transported medium itself has a mass.

To account for this at each joint in our model appears to bring about an
almost exorbitant compiexity, so let us hold back and restrict ourselves
to examine a simplified case. In reality areas gradually decrease
approaching a constriction, and the kinetic drop is correspondingly
gradual. The approximation now considered is to regard the drop to occur
at one specific place, namely at the entry of the narrowest tube.
Identify this drop with an extraneous pressure generator P, as in
(1.112). We get from the elementary expression of kinetic pressure
P=pxv2/2

0 U, » U, »
Po == ( (—) = (—) ) (1.120)
2 A, A,

remembering U,=U, because of continuity. Our approximation is now that we
assume the entering particle velocity U,;/A, to be negligibly small beside
the velocity U,/A, in the constriction. Similarly we neglect A, beside A,
and also Z, beside Z,. Now identify the final terms in (1.112) as an
extraneous correction flow U,, and using (1.120) we approximate it as

Uy = P/(Z,42Z,) = = U,2/(2xcxA,) (1.121)

From (1.22) we have U,=r|,~sp,=Uy=ry,—s,, and inserting (1.112) we can
express the net flows as

U‘ = U2 = f1g — S92 — klz*(rlu'l'Szu)\"" Pe/(21+22) = UO + Ue
‘ (1.122)

the point being that they are now expressed in terms of the incident
waves only. | have oalso identified the two auxiliary flow quantities U,
and U,. U, is the net flow we would have had with the original scattering
equations, and U, is the correction flow to examine now. Combining
(1.121) and (1.122) makes the quadratic equation

Ugx2zczhA, + (U, + U2 = 0 (1.123)

which can be solved as

BASIC TOOLS 1 - 29



u

e +

— = ~(14y) V y=(2+y) with (1.124)
Uo (-)

y = czA, /U, = c/v,

y is a velocity ratio between the speed of sound and the uncorrected
particle velocity.

Fig 1.14 shows this correction ratio U,/U  as a function of the velocity
ratio y. The horizontal scale is simuitaneousiy calibrated in the velo-
city v,=U,/7A, and the corresponding kinetic pressure. It is easy to see
that for large y, that is, for low porticle velocities the curve closely
approximates the relation

- U 7U, = 0.5=U_/cxA, = .5zv_/c = 1/2y (1.124b)
e o o 2 o

This is very like (1.121) except that it uses the uncorrected flow U,
instead of the corrected flow U,, and just indicates that provided the
correction is small it does not matter which one of them we use. For

small y, high particie velocity (1.124) will instead approximate Ue=-U,.

100 10 1 y=c/vq
-1 L L L .
T T T

-0.1 4+
-0.01

-0.001 L | 1 1 : ] 1 } i | = |

1 10 100 1k vy m/s
1 >

{
1 10 100 1x p Pa

Fig 1.14. Ratio of kinetic correction flow to uncorrected flow
vs. uncorrected particle velocity and kinetic pressure drop.

The expression (1.124) is unnecessarily complicated. To save a little
computer time you can use the simple approximation
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U /Ugm =1/01.5+2|y|) (1.125)

dotted in fig 1.14. The absolute sign on y is important. The correction
always operates to diminish the absolute value of U,, irrespective of
its sign.

To summarize, the flow scattering equations (1.112) corrected for the
kinetic pressure drop will be

U‘Q = k|2*(r|0+820) =(1.23)
Uy = Fyg = Ssq = Uy =(1.122)
U, = -U, Uyl 7C1.5]|u, | + 22e2A,) from (1.125)
Frop = r|a—U12+Ue =(1.112)

Sip = S2q * Uy —- U

In practice it is essential that the approximation to the correction as
in (1.124b) is not permitted to become numerically greater than U,, as
it wouid never become by the ’'exact’ equation (1.124). Otherwise there
will be an over-correction causing a change of flow direction and insta-
bility in the computations.

It might appear unnecessary to stress this since that danger limit is
not reached until v, exceeds 2c, a completely absurd velocity in speech.
But, unless you tame it, this is precisely what the flow wave analogy
may give you when a tube is closed down towards a small area. For proper
simulation of a closure some series loss, for instance this kinetic
correction, is mandatory.

A corresponding procedure with the pressure wave analogy may be to find
the particle velocity in the narrow section 2 using (1.11) and (1.12b) as
vo= Uy/Ay; = (pyy = qp,)/0cC (1.126)
and, using (1.111) have it in terms of the incident waves as
Vo = (p1q — Qsq + P./72)x(1+k)/0cC (1.126b)

In the absence of P_. correction we would have had the uncorrected
velocity

Vo = (pg = Gy )=(1+k)/pc (1.126b)

The assumption that A, is much less than A, implies that k is approxi-
matively one. Let us further define the auxiliary pressure quantity P, as

Po= 2=(py, = qy,) (1.127)

Q
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Inserting this and k=1 into (1.126b) gives the approximate
vy = (P, + P.)/oc (1.128)
which we insert into the kinetic pressure equation to find

o] 1
P = —V22 =
2 20(:2

» (P, + P.)?2 (1.129)

This is solved for Pe/F’0 and we arrive at exactly the same expression as
(1.124) for the quotient, with

y = pc?2 / P, = c/v, (1.1210)

0

like before.

The kinetic correction procedure with the pressure wave analogy can thus
be summarized as

P, = 22(p,;g — d3g) =(1,127)
Pe ® -Pox|P,|7(1.5|P,| + 20¢?) from (1.1210), (1.125)

and insert this into scattering equations (1.111). These can also be
rearranged using (1.127):

Pop = Qgq + (14K)#(P_ + P_)/2 (1.1211)
Gyp = P1g = (1=K)=(P, + P_)/2
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R=1/2 L:1/2 L-1/2 R=1/2
. o—{ I 11—

L — G*IU — C=l

A

G
L = p/A Ns2/m® inductance per unit length
C = A/(p*cz) m4/N capacitance per unit length
Z =V L/C = pxc/A Ns/m?> characteristic impedance
D = R/2Z + Gz2/2 Nep/m attenuation per unit length

Fig 2.1. Acoustic line segment and its analogy with key elements
and properties.
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2. EVALUATION OF LOSS MECHANISMS
IN THE VOCAL TRACT

Formal evaluation of distributed series and shunt losses from
viscosity and wall interaction. Discrete losses from radiation,
glottal resistance, jet formation. Magnitude comparison of dif-
ferent loss mechanisms.

There are a substantial number of different loss mechanisms having
important influence on the waves in the line. They are mostly dependent
of the geometry but also often of the pressure, flow, or frequency. This
makes the total picture rather complex.

The following is a concise review and quantification of the losses. Most
of these are well established in the literature, see for instance Fant
(1960) and Fianagan (1965). Those and other results will be compiled and
all put into terms of contributions to the loss factor. The aim is to
bring out the numerical coefficients needed in the loss corrected
scattering equations and to elucidate their relative importance.

For reference fig 2.1 shows the conventional expressions for some main
elements and characteristics in the acoustic line.

R and G are series resistance and shunt conductance per unit length. The
attenuation constant expresses the attenuation of the wave per unit
length of the line. In line theory the expression shown is valid only if
R is small compared to Z, and 1/G is large. We do not restrict ourselves
to that condition since we use the formula mainly as a normalizing
vehicle. This will not impair the wvalidity of the modelling, but the
special interpretation as attenuation per unit length is not granted at
high losses. But this does not matter very much since the concept of
attenuation as such is not particularly interesting in the speech synthe-
sis application.

To enable a unified overview the various losses will be formulated in
terms of their contributions to the attenuation constant. in the applica-
tion at hand this quantity is of course anything but constant, so |
prefer to use the alternate term loss factor.

All the distributed loss phenomena are treated under the assumption of a
circular cross section. Mostly the losses are due to effects at the tube
wall surface, the exception is the turbulence loss, and thus sensitive to
the relation between the perimeter and area of the tube. A convenient way
to account for other than circular cross sections is to multiply the loss
coefficients by a ’shape factor’. This factor is the ratio of perimeters
for the actual shape and for the circular shape at equal areas. In the
vocal tract this shape factor is often of a magnitude around 2.
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2.1 SERIES LOSSES

The class of series losses incorporates what we may call laminar,
turbulent, and viscous losses. They have in common that they primarily
are functions of the flow, not the pressure, and also of course of the
areda. They will have to be distributed along the line in order to model
the sometimes very selective influence on formant bandwidths. The selec-
tivity is because losses at specific places in the tract will affect the
formants in relation to their individual resonance patterns.

These three loss mechanisms are basically in fact one and the same, but
they manifest themseives differently depending on the circumstances. They
are all due to shear in the air stream. With the laminar and viscous
cases the shear is in the boundary layer just inside the tube wall where
the particle wvelocity increases with the distance from the wall. The
effective thickness of this boundary layer is inversely proportional to
the square root of frequency. This is reflected in the viscous loss. At
sufficiently low frequencies or small diameters the boundary layer
thickness becomes comparable to the tube cross dimension and then the
frequency dependence vanishes and we reach the laminar region. Is however
the velocity high enough the flow is no longer stable, the boundary iayer
more or less vanishes and the whole possage is filled with turbuience.

2.11 LAMINAR AND TURBULENT DC FLOW LOSS

The pressure drop in a steady flow through a cylindrical pipe is general-
ly given in the handbook literature (e g Schlichting (1951), quoted by
Fant (1860)) as

p=o9 s | 2vliseXN/(22sd (2.1
p is the pressure drop at the speed v through the pipe of length | and

diameter d. A is a resistance coefficient depending on the Reynoid’s
number

Re = vad=x*xg¢ / (2.2)
For laminar flow the resistance coefficient is

Aam = B4 / Re (2.3)
and for turbulent flow, empirically

Airp = 0.316=%Re" /% = (100 = Re)~!/4% (2.4)
Expressions (2.3) and (2.4) together imply the transition between laminar

and turbulent flow to occur at Re = 1188. The formulas are wvalid for
liquids and for gases when pressures are low enough that compression can

be neglected.
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Compiling (2.1)-(2.3) and the general relations Rap/U, v=U/A, Z=0oxc/A,
A=1t=d?/4 will render a loss factor, for the laminar flow at circular
cross section

Diagm = R/ZZ = 4zmxp/(pucxA) (2.5)
numericaily becoming

D,gm = 5.858210"7 / A /m (2.8)
with A in m2.

Similarly using (2.4) for turbulent flow | get the rather awkward
expression

1 /2 i usd
D = % ( % y!74
trb 8xuc 200x%¢p All172 (2.7)

and, with the constants inserted, U in m*/g and A in m?

Dtrb = 1.234*10—5 ” U+.75 " A—I.375 (2.8)

2.12 VISCOUS LOSS

Contrasting to these steady flow losses there is the frequency dependent
viscous loss in the boundary layer at the tube wall. The loss resistance
is, after Fant (1960), p 32

Rysc = (S 7/ A?) » (wspsprs2)!/2 (2.9)

S being the circumference of the tube. For simplicity assuming a circular
section and reusing the basic relations given before (2.5) it can be put
into a viscosity loss factor

R T fxpu

= - w(—) 172
2Z  c  osA (2.10)

vsc

and numerically, with f in Hz and A in m?2

Dygc = 3.626x10°5 = (f/A)!/2 (2.11)
We observe that the only loss factor yet mentioned that is really well
behaved is the one for laminar flow, it is independent of both frequency
and flow and represents a pure resistance. The turbulent loss factor is
flow dependent, as is the consequence of a non-linear resistance, and the
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viscous loss factor depends of frequency.

To give a hint of their relative importance the laminar, turbulent, and
viscous loss factors are shown as composite diagrams in fig 2.2 and 2.3.
Here the loss factor is given as a function of flow and tube area. For
the viscous loss factor a frequency of | kHz is assumed. The plots show
the largest of the three rather than their sum. This causes the lines of
equal loss to exhibit distinct breaks instead of smooth bends. The plot
is divided into three regions dominiated in turn by each of the loss
types. For the flow range of interest in speech the viscous and turbulent
losses are the most prominent ones. The laminar losses rule the actions
only close to complete cutoff.

The fact that laminar losses are negligible in vowels does not mean that
they can be let aside in the model, namely if it shall be used also for
articulations and sounds involving area cutoff.

2.13 JET LOSS

This section is more elaborated since the phenomenon is relatively little
mentioned in the speech modelling literature.

When an air stream meets a more or less sharp constriction, then static
pressure power is converted into kinetic power obeying the classical
relation p = pxv2/2. (Compare Fant (1960), pp 269-274, discussing the
glottal flow. Many times the formula is augmented with a near unity
constant (k) to account for shape variations and viscosity effects).
Though this pressure drop in principle does not mean a loss of power it
can be rewritten in our formulation of the loss coefficient using the
ratio p/vA=p/U for the 'resistance’. As shown by Fant a simple differen-
tiation leads to a differential resistance of twice this value. We would
then have R=2p/vA and putting it into a loss factor would then give

Djet*' = (2p/VA)/2Z = v/2c = U/2cA (2.12)
The notation D=l rather than D is to take into account that this loss
effect is not a distributed one. The loss resistance is a discrete one at

a specific place, independent of the tube length I. The notation Dxl then
will keep the dimension of D to be 1/m.

Let us compare this formula to findings of Ingard and lIsing (1967)
investigating the impedance of a circular orifice in a thin plate. At low
sound levels this impedance behaves the classical way as the radiation
impedance of a baffled piston. At high levels however the situation
changes completely as the resistive part will dominate and take the
specific value p»v where v is the peak particle velocity. The critical
velocity of this takeover was around 1 m/s, independent of orifice area.
They also noted that the takeover coincided with the formation of jets of

LOSSES 2 - 4



108S4 1982-12-28, 12102108

—

100 1k 10k cm:/s

T LOG FLOW (m3/s)>
-3 -2

+1

LU L

LOG LOSS FACTOR

~4

T T TTTT

|
| ]
T TTTImT

LILLILILLLLL

TTTTI

IR I AR AR R R

L1 i | lJllllJi A1 111

-8

-7 -6 -5 -4 -3
LOG AREA (m2) '
L 1 [} [} ]
0.1 1 10mm? 1 10cm?

Fig 2.2
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air into the lower pressure side instead of symmetrical air movements at
low and high pressure sides of the orifice. Additionally this specific
resistance was found to be the same when the sound pressure was lowered
and superimposed on a continuous flow of comparable velocity v.

This specific resistance on the area A will give the acoustic resistance
pav/A, and dividing by twice the characteristic iine impedance let us
form it into our loss factor. This does indeed give eq (2.12), let us
call it the ’jet loss’. With the numerical value of c inserted it becomes

Djec*! = 1.429:1073 « U/A (dimensioniess) (2.14)
Using the jet loss derived for glottis or a sharp constriction will need
further justification when applied to the vocal tract line since this
will mostly have rather gradual constrictions. When air is forced through
a passage with smooth narrowing and expansion the kinetic energy may be
recovered as static energy on the expansion side, and then we have the
Bernoulli underpressure in the passage, but no physical loss of energy.
If however the air stream releases from the wall in the expansion phase
and forms a jet, if we get 'flow separation’, then much of the wave
energy will indeed be lost. Part of it will be locally converted into
heat when the jet turbulence is damped out by the viscosity, part of it
will radiate away in the form of noise.

The question is then, does the air release from the wall or not? It is
pointed out in fluid dynamics handbooks (e g Goldstein (1938, 1965),
p57) that this can not be resolved from the flow and the wall shape
only. It is also necessary to know whether the downstream pressure field
has a gradient capable of bailancing the centrifugal force that will
otherwise cause a release. To resolve this in detail would be tremen-
dously complex and will not be attempted.

Instead, as a rough quantitative example, consider an air stream of
velocity v=U/A, following a curved surface of radius r, see fig 2.4. The
centrifugai force will then give a radial pressure gradient
dp/dr=p=v2/r. The air enters a section of area A, having a standing
wave of frequency f and the pressure could then approximately be
p(x)=p, xcos(Z2=n=xf«x/c+@p) where ¢ is some unknown phase and
Po,=U/Zy,=Uxpxc/A, is the pressure from the same flow driving the impedance
of the larger area section. Differentiating p(x) to give an axial
pressure gradient and equating its amplitude to the radial pressure
gradient would then give a rough idea of a critical radius
r=UzAy/ (2zmsf=A 2). With A;=.1 cm?, A,=5 cm?, U=.25 I/s, f=1 kHz we get
r=20 cm. This rather considerable value should then indicate the smallest
r where a separation can still be prevented should ali conditions like
phase and gradient directions be maximally favourable. Since r comes out
so large it seems safe to assume that jet formation should be the normal
state of affairs at almost any significant constriction at flows repre-
sentative for speech. Further support may be that with this .25 I/s DC

LOSSES 2 - 5



flow the critical particle velocity | m/s is reached ailready with an area
as large as 2.5 em?.

it is important to remember that this loss is not distributed, but comes
from a discrete resistor at the appropriaote place. It can be argued
whether this place is at the entry or exit of the constriction, but this
is probably not very distinctive. The pressure drop occurs at the entry
but the actual loss is at the exit where the kinetic energy fails to be
reconverted into static.

Fig 2.4. Simplified conditions for flow separation.
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2.2 SHUNT LOSSES

We now consider losses that shouid be represented by a properly connected
shunt element, this because the loss mechanism is sensitive to the
pressure in the line rather than the flow. In section 1 | used E for the
shunt loss factor to distinguish it from the series loss factor D. In the
following | prefer to equivalently use D only, but augmented with a
subscript for the mechanism involved. This is natural since the series
and shunt losses appear as additive terms in the total ’attenuation
constant’ of fig 2.1. Also remember we work now with a distributed loss
factor, i e loss per unit length. Before use in the scattering equations
the loss factors must be multiplied by the appropriate line segment
length.

2.21 HEAT CONDUCTION LOSS

The temperature variations induced by the sound pressure are to some
extent lost by conduction into the walls. Ingard (1953) gives the
specific surface conductance as (cf Fant (1969), p 33)

n-1 Azxw
Go,heut w ( )1/2
pzc? 250%C, (2.15)

where 1 is the adiabatic constant, A is the thermal conductivity, and Cp
is the heat capacitivity. To obtain the loss conductance G per unit
length the specific conductance is to be multiplied by the circumference
of the tube section. For a circular section this is nmed=2=(mzA) /2. Then
we can assemble an expression for the heat conduction loss factor as

e (n-1) A f
Dhegt = GZ/2 = w ( w =) 1/2

c p*Cp A (2.186)

Inserting numerical values of the constants gives
Dheqt = 1.610s10°5 = (f/A) /2 (2.17)

which also matches the observation by Fant (1960) that it is smaller than
the viscous loss factor by a constant factor of 2,2.

2.22 LOSSES INTO THE VOCAL TRACT WALL

Next we look at the direct radiation from the air into the tube wall. The
wall has the specific wave impedance ¢ xc,, using the density and the
velocity of sound in the wail material. The specific conductance is the
inverted value of this, and multiplying by the tube circumference gives
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the loss conductance per unit length. From that the loss factor for the
wall absorption will be

D = (/M) V72 & (p2c)/(p,xc,) (2.18)

wab
Thie assumes infinite thickness of the walls. The effect is a companion
to, but should not be confused with the effect of thin wall vibrations
treated in the next paragraph. Assuming that the wall material has essen—
tially the same properties as body temperature water of 1% sadlinity,
e,,= 1000 kg/m3, c,= 1500 m/s, will give the numerical value

Dygp = 4.7151074 = A-172 (2.19)

it is not known to me that this loss term is mentioned in the literature.
The term absorption loss will have to be taken with some reservation.
Much of the power absorbed may well be reradiated at the outside of the
wall.

2.23 LOSS FROM WALL VIBRATIONS

The losses caused by sound induced vibrations in the vocal cavity walls
are widely recognized though quantitative data on the wall are relatively
scarce. For the audio frequency loss evaluation let us use some resonable
values, namely a specific surface resistance R, = 12= 103 Ns/m? in series
with a specific surface inductance L, = 20 kg/m2 (which implies a wall
thickness around 2 cm). The figures represent a gross average of data
from Ishizaka et al (1975) and Fant et al (1976), further reviewed in
table 4.1.

For audio frequencies the inductive part dominates widely over the
resistive in the series equivalent. To have the loss represented by a
pure shunt conductance we can make the transformation G, = R,/ (wxL,)2. To
give the conductance per unit length it is multiplied with the tube
circumference. Assuming a circular cross section with circumference n=d
we get D, = mxd=G zpxc/(2:A) which is rearranged into

Ry=pxc i
= %
4xL 2+m3/2  §2 « Al/2 (2.20)

D

wal

and with numerical values inserted

D = 537 = f-2 & A-1/2 (2.21)

wal
Comparing this to the wall absorption we find them to be equal, with the
wall material assumptions done, at the frequency 1070 Hz. Above that

frequency then the absorption formula for D, should be used instead of
D

wal*
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Fig 2.5 shows the dominant shunt loss factors as functions of frequency
and area. It is seen that the wall vibration loss dominates at low
frequencies and heat conduction loss at high frequencies. The transition
is in the neighbourhood of 1 kHz. The wall absorption is always smaller,
it is just below the others at the minimum around 1 kHz and thus will
contribute only marginaily, if at all.

it can be argued that the vibrating wall surface is independent of
articuiation. For that case the effective circumference in establishing
the loss conductance is constant. Assuming S=10 cm wouid then give the
aiternate vibration loss formula

D = 15.2 =« §-2 &« A-! (2.22)

was
This would give a different slope of the contours of equal loss of fig
2.5, but not a too big difference in values at larger areas. The wall
loss modeil of section 4 assumes the total wall surface of the vocal tract
to be constant.

2.3 LOSS FROM LIP RADIATION

To a first approximation the termination at the lips can be represented
with a classical series R-lL combination representing one side of a
baffied circular piston. For the resistance we take the notation used by
Fant (1960) p 35

R = prw?xK,/(4xmsc) (2.22)

rad

K, is a frequency dependent radiation resistance factor that accounts for
the more complicated effects from baffling. K; has o relatively narrow
range of variation from 1 at zero frequency to 2 with an infinite baffie.
With large areas and high frequencies K; will drop below 1, but the value
1.4 can represent a gross average for normal conditions.

Combining this radiation resistaonce with the characteristic line impe-
dance Z=pxc/A for area A gives a radiation loss factor

D gqqnl = R/Z2Z = m:fzmA#Ks/chz (2.23)
and numerically, using K;=1.4

Dygg*! = 1.795%10°5 » 2 =« A (2.24)
Like the jet loss it is a discrete loss, not a distributed parameter, and

for that reason we put it as Dxl instead of D to keep the dimension
correct.
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The figure here, and aiso the coming one for the glottis, must not be
used for more than indications that they pertain to important effects.
Just because of this there is no doubt it has to be incorporated into the
model, and that the modeiling has to be done with greater care than in
the simple consideration above.

2.4 LOSS IN THE GLOTTIS

The giottal passage will cause substantial losses to the waves in the
vocal tract. The cioser analysis of this beiongs in a treatment of the
excitation rather than the transmission line, but it would be good to
have a rough indication of the magnitude of an equivaient terminating
shunt resistance. For the present let us just neglect the complications
from time variation and assume a transglottal pressure of pg=l kPa and a
mean giottal fiow Ug=.25 I/s. The mean fiow resistance is then
pg/Ug=4ss«HZl6 Ns/m5 and, as discussed under the jet loss, the differential
resistance twice this vaiue. Now regard this resistance as a shunt con-
ductance across the ideally open-circuit line of impedance Z and area A
to give a loss factor

Do ¢xl = 2G/72 = p*c/(A*Z*Z*pg/Ug) (2.25)

gl
Inserting py = 10 cm H,0 = | kPa, Uy = .25 I/s = .25:1073 m%/s, and
A = 8 cm? = 8x10"* m? renders a reference value of

D, #1=0.031

glt
In itseif it is interesting to note that the giottal damping decreases
with transglottal pressure and increases with glottal fiow.

The glottis loss conductance will have a great influence because it is in
principle always located at a pressure maximum for all formant frequen-
cies, even if the reiative magnitudes of these maxima are strongly depen-
dent on the particular area function.
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2.5 COMPARISON OF LOSSES

For the comparison we rewrite the loss factors into logarithmic form to
make the numbers less awkward to compare. To care for the distributed
losses we include a line segment length I.

log(D=1) = log(D,) + X xlog(A) + X xlog(U) + Xexlog(f) + X, xlog(l)
(2.26)

Xg» X, and X; are then the exponents for area, flow, and frequency in
the different formulae. X; is just a binary switch to indicate the
distributed losses. Values for all the loss mechanisms considered are
compiled in table 2.1.

The log(Dl) column shows results assuming the following arbitrary
reference values

A = B cm? = 82104 m? log(A) = -3.097
U=0.5I/s = 5104 m3/s log(U) = -3.301
f = 1000 Hz log(f) = +3.000
| = 17.5 cm = 1.75=10" ' m log(l) = -0.757

The final column Dc/mt is a measure of the contribution to formant band-
width for each of the loss factors, assuming the same uniform tube. Of
course this tube will have no formant at that particular frequency, but
the numbers are useful as a basis for scaling as shown in fig 2.7. In
this the figures of the D¢/mt column marked with = have been multiplied by
a factor of 2. For the discrete losses this is to account for their
action at pressure and flow maxima where the RMS value is twice the space
average. For the surface dependent distributed losses it is to account
for a area shape different from a circular shape. Furthermore the dimen-
sionless loss factors for the discrete losses have been divided by the
iength to give figures with comparable meaning.

The uniform tube can serve as a general reference, but the influence of
many of the loss factors is clerly negligible for this case. But in most
speech sounds the area will have minima much smaller than the average,
and with correspondigly higher losses. The influence of these losses on
the formant bandwidths is critically dependent on the place of the loss
in relation to the standing wave pattern for that particular formant with
that particular area function. Thus the series losses will be nuil at the
flow nodes as will the shunt losses at the pressure nodes. For practical
purposes however the bandwidth contributions in the uniform tube as in
fig 2.6 and 2.7 can be regarded as minimum values. The exception is the
bandwidth contribution from radiation loss which is area dependent in a
way that is inverse to what are all the other loss factors.
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Table 2.1. Logarithms of loss factors and exponents of dependences of
area, fiow, frequency, and length, ail in Sl units.

Discrete: log(D =1) X, X, X; X, log(Dl)| De/n
<0> <m? > «m3/s> <Hz> <0> <Hz>
Lip rad -4.746 +1 . +2 . -1.84 9.2 =
Glottis -1.5 . . . -1.5 20 £
Jet -2.845 -1 +1 . . -3.05 D.6
Distributed: log(D,) X, Xy X¢ X log(DIl)| De/n
</m»> <m%*s «m3/s> <eHz> ams <0> <Hz>
Wall vibr +2.730 -0.5 . =2 1 -2.48 2.1
Wall abs -3.327 -0.5 . . 1 -2.54 1.8
Heat cond -4.793 -~0.5 . +0.5 1 -2.50 2.0
Turbulent -4.909 -1.375 +0.75 . 1 -3.87 .
Laminar -6.232 -1 . . 1 -3.89 . 1
Viscous -4.441 -0.5 . +0.5 1 -2.15 4.5 x»

To find the resuiting formant bandwidths analytically from all the loss
components and the area function is a rather complex operation. One of
the main attractions of a lossy line model is of course that this is
performed impiicitly and the synthesized signais wiil get proper formant
bandwidths.

Figs 2.6 and 2.7 is an attempt to give a general overview of the diffe—
rent loss effects. It shows the logarithms of dominating loss factors as
functions of area and frequency, for negiigible flow (that is, less than
0.01 I/s) and for a flow of .5 I/s. To make it possible to compare the
distributed and discrete losses the distributed ones are computed for the
reference length 17.5 cm, as in the DI column of table 2.1. For this
reason the magnitude indications differ from those of figures 2.3 and
2.5. We must also keep in mind that the diagram is valid only for uniform
tubes. It is however interesting to see that the general loss minimum is
walied in at typical F1, F2 frequencies and typical areas. One could
specuiate on nature having optimized the absolute size of the speech
organs.
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Fig 7.8 may show all these loss terms are not vain. It is a diagnostic
printout from a simuiation in a dynamically controlled line, showing the
spatial distribution of series losses as functions of time. A coarse gray
scaie shows magnitudes of the loss factors D=l with one step for each
power of ten. The black level is a maximum where the loss resistance
approximates the iine impedance so that Di~1. The point of maximal con-
striction in the vocal tract is easy to follow. Plots like this support
my view that the jet loss is worthwhile to inciude in a model, but the
turbulent loss is more doubtful. There is no doubt of the importance of
viscous and iaminar losses.
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Fig 2.7. Contributions to formant bandwidths as functions of
frequency for a uniform 8 cm2 tube of length 117.5 cm, shape
factor 2. This diagram represents a section of fig 2.6 at area 8

cm2.
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3. LIP RADIATION MODEL

z domain lip radiation impedance model of Laine. Interfacing the
model to the reflection line analog.

The acoustic impedance of the lip opening can be represented by a resis~
tance R4 and a reactance X 4 as

R
X

prw?xK /(4smne) (3.1)
4upuwul g/ (3un?ur)

rad

rad

(cf section 2.3) where r is the radius of the opening. K, is the radia-
tion resistance factor of Fant (1960) and L; a corresponding reactance
factor. We repeat the general observations that at low frequencies the
acoustic resistance is independent of the area but proportional to the
square of frequency. The reactance is that of an inductance, dependent of
the area. Usually this is put in terms of an end correction, the geo~
metrical tube length is apparently incremented by a certain fraction of
its radius. The effects of baffling and the deviating behaviour at higher
frequencies is accounted for by the correction factors K; and L. In the
frequency and area range of interest they take values not far from unity.
The underlying theory, see for instance Morse and ingard (1968), renders
very complex expressions for these correction factors, including Bessel
functions.

Laine (1982) exploited that the radiation impedance of a piston in a
sphere couid be well approximated by sine and cosine functions and
proceded to suggest a number of models of the radiation impedance in the
z domain. The simplest of these is

Z.qq1 = e#cxClu(z=1)/z = prcxCin(l-z~") Ns/m® (3.2)

where Cl is a parameter to be optimized in relation to the sampling
frequency. At 16 kHz he gives it as 633 /m2.

In the frequency domain this corresponds to

Z.qq1 = excxCl = (1 - coswt + jxsinwt) (3.3)
This model handies the radiation resistance weil, but a shortcoming is
that, since the area does not enter the formula, the variation of the

end correction with the area is not accounted for. Instead the reactance
will be that of a fixed inductance.
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To have one more degree of freedom we look at Laine’s pole-zero model
pcC z-1 ec j-z-!
3 ¥ — % a % T o % R — (3.4)

A z-b A 1-bxz~!

P4

rad

By mean sqguare error matching to the impedance of a piston baffled in a
sphere Laine found expressions for the coefficients

.0779 + .23732VA (3.5a)
-.8430 + .3062xVA (3.5b)

a
b

with A in cmz, valid for areas in the range A=.5 to B cmz, and the

radius of the sphere being 9 cm. The coefficient ’b’ determines the
location of the z domain pole along the real axis and gives a means to
influence the ratio of resistance to reactance. The coefficient ’'a’
operates as a magnitude scale factor. For the special case with b=0 the
singularities coincide with those of the simpler model of (3.2).

For reference the Z ,; model is shown graphically in fig 3.1 for two
different areas. The piot shows Z resolved into real and imaginary parts
as a function of normalized frequency, that is, foliowing the unit
circie in the z domain. The log scales conceal the fact that the
resistance and reactance basically have sinusoidal shapes.

To incorporate this z domain impedance into the model | form a
reflection coefficient at the lip end. That is where the last tube with
area A(N) =A meets the radiation impedance. Using (1.11), (1.15), ond
(3.4) the reflection coefficient will be

k = (Z 443 — 0%c/A) / (Z_ .43 + 0uc/A) =
((a=-1)=xz - (a-b)) / ((a+l1)=xz - (a+b)) (3.6)

Unlike the conventional reflection coefficients we have had so far this
one is now a function incorporating the delay operator z '=1/z. It is
also a function of the area A, indirectly from its influence on the a
and b coefficients.

Here at the end joint of the line analog the scattering equations (1.23)
luckily will simplify, because we have no backward wave s(N+1). in other
words, what has been radiated away from the line end as r{N+1) is lost
forever as far as the line is concerned.

Inserting (3.6) into (1.23) with s(N+1) = 0 after some manipulation

gives the flow radiated from the lips. To simplify the notation, use
subscript 1 for section N and 2 for section N+1 and get
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(1=k)x=r, giving
(Ca+b)urynz=! + 2ur, - 2bxr %z~ ') / (a+l) (3.7a)

ra
ro

Similarly with (1.23) the flow reflected back into the line is

S
S

k=r giving
(Ca+b)zs;#z™! + (a=1)xr; + (b=ad=r zz~') / (a+1)
(3.7b)

These equations replace the usual scattering equations here at the end of
the tube array. The input wvarible r, is the resuit of the scattering
computation at the joint between the two last tubes. Speciol extra
storage is required to save the delayed input r,*z“ from the previous
sample time. r, and s, are not changed by the normal scattering equations
so they can be left in place and used in the next time siot as delayed
values.

This way now a freguency dependent element using the z transform tech—
nique has been interfaced to cooperate with the reflection model. in
doing this kind of operation we use the sample interval t and the cor-
responding delay operator z~!, It is wise not to confuse this with the
travel time through one tube section which is oniy one half of this time.

The radiation impedance has several important effects in the model. it
will give the appropriate frequency and magnitude shaping of the exit
flow wave. Through its reactive port it will account for the iip area
dependent end correction that in turn will affect the formant frequen-
cies. its resistive part will influence the formant bandwidths. Finaily
it determines the reference point of zero pressure because of the missing
backward wave from outside space.

A weadkness in the line analog with a constant number of equal length
sections is that it cannot simulate a varying total length other than by
varying the sampling frequency, something that is rather intricate. In
connection with the end correction, the inductive part of the radiation
impedance, there is however an additional possibility of minor
adjustments of apparent total length.
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4. WALL INTERACTION MODEL

z domain modelling of the wall impedance and its installation
into the line. Discussion of quantitative data.

The vocal tract walls are displaced by the internal waves. One conse-
qguence pertinent to audio frequencies will be that the resonance
frequencies of the tract are elevated. This is related to the compara-
tively large acoustic mass of the walis effectively shunting the mass of
the air in the tract. Another aspect is that the resistive part of the
wall impedance will introduce a loss of energy. Since the walls are mass
controlled in the audio range the resistance will have its main
influence at low frequencies as we saw with the wall vibration loss. The
flow into the walis is partly absorbed in the tissue, partly reradiated
through the skin into the free air surrounding the speaker.

This study negiects pumping from area variations, but it comes natural
to include a related thing in the wall model, its function as an air
reservoir in case of a downstream closure: under static pressure the
wall compliance will store a certain volume of air. At very low frequen-
cies the wall impedance model shouid then be capacitive.

The most accurate wouid be to install one wall element at each tube.
Fair approximations can be expected with a smailer number, perhaps one
in the mouth region for the cheeks and one at the glottis end, or even
the laiter one calone. The motive is that the infiluence is restricted to
jow frequencies where the pressure will be reiatively homogeneously
distributed along the line. Generally, there will always be a pressure
maximum at the glottis and a node at the mouth opening. The greater
effect from a shunt element is thus to be expected at the glottis end.
However the combination of a middle constriction with small lip opening
may justify also a front shunt element for the cheeks.

From these points it is reasonable to discuss a series resonant circuit
as a special element to connect as a shunt to the line analog. The
inductor and the resistor will then represent the wall mass and loss.
The reactance of the capacitor for the wall compliance is generally
negligible at audio frequencies, but is there to model the pseudo-static
qir reservoir,

Let us select a normalized resonance frequency
e = W, »T (dimensioniess) (4.1)

where w,, is the angular resonance frequency of the wall mass and com-
pliance. This frequency is rather low, the order of 50 Hz.
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in the z domain the resonance manifests as a conjugate pair of zeroes
located on an arc with the small radius e around the point z=1. For
simplicity | arbitrarily assume a Q value of 0.5 so that the zeroes
coincide on the real axis at 1-e. For DC, that is z=1, the impedance is
infinite and we have a pole. A z domain representation of the impedance
can then be put as

Zw
where K is an impedance magnitude scale factor (in Ns/m°). Working
backwards into the frequency domain let us see whatever eiements this
model will represent. At low frequencies we can approximate z on the
unit circle as

—

=K = (z - (1-e))%2 / (z - 1) (4.2)

Z = cosSWT + jsinwt = 1 + juwr (4.3)

which, inserted into (4.2) will give

Zw, low
It is now simple to examine Z ,,, for the three cases that wr is much
smaller, equal, and much greater than e. From that we identify the
impedance elements as

C, = t/Ksxe? 8x10"9 mS/N (4.5)
R, = 2=K=e .8x10% Ns/m®
L, = Kzt 1.2%10% Ns?2/m®

where some reasonable values for the entire vocal tract are also listed.
At moderate and high frequencies neglect e in (4.2) to get

Zy.high
Fig 4.2 shows the frequency dependence of (4.2) resolved into resistance
and reactance. At frequencies approaching half the sampling frequency
the ’inductance’ begins to misbehave, it shifts into a high negative
resistance (this can be avoided by inciuding another pole at z=-1 in the
model). But here we are well above the resonance frequency, the
impedance is high enough compared to the line impedance to be of no
practical consequence to the model.

Now that the elements of the wall model are established as shown in fig
4.1 proceed to connect it close to the glottis end of the line model.
The connection can be done in a similar way as we did with the radiation
impedance, but using the shunt loss formula (1.93). But we know that the
wall impedance is at all frequencies considerably higher than the line
impedance, so computations can be simplified by using the following
approximate procedure: The wall impedance is fed from the pressure in
tube 1, which is

WALL INTERACTION 4 - 2
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P, = (rl + SI) i Z, (4.7)

and that pressure generator has the internal impedance Z,. We can with
no great error neglect this beside Z, to obtain the flow into the wall as

u, = p/Z, (4.8)
inserting Z, of (4.2) U,, is solved for as

U, = (pyxz~! = pysz"2)/K + (1-e)x (26U, 52" - (1-e)nl, %27 ?)
(4.9)

needing some extra storage locations for the delayed quantities. The
coefficients K and e are found from (4.1) and (4.5). The specific values
with (4.5) will at 16 kHz sampling give w,/2n=50 Hz, e=0.02, and
K=20%10% Ns/mS.

The number e is rather small since the wail resonance is much lower than
the sampling frequency, and this makes necessary a fairly high accuracy
in the coefficients for the delayed U,. It is definitely not permitted
to neglect the e2 term in the coefficient for U,=z2, If you do that the
Zeroes will separate and one of them cancels the pole at z=1, thus the
resonator behaviour will degenerate into a first order system.

Now that U, is known, we go back to the line and steal” that amount of
flow from r; and s, like the loss flow in (1.83). Since the wall flow is
a small low frequency signal you can skip the detdil of rationing with
regard to k;, which anyway is small at the joint next to the gilottis.

WALL INTERACTION 4 - 3



Tab 4.1. QUANTITATIVE DATA ON THE VOCAL TRACT WALL

Ishizaka, French, and Flanagan (1975) made direct measurements of the
wall impedance and gave values of mass, resistance, and stiffness,
separately for the relaxed and tensed cheek, and for the neck for a male
subject. All these are given per unit area, so application of those data
requires knowledge of the applicable wall area. The frequency f, of zero
wall reactance was given.

Using hypothetical effective areas 80 cm? for each the neck and cheek |
obtain from their data

f, L R 1/C Q

Hz Ns2/m5  Ns/m® N/m3
Cheek, reliaxed 32 2.6 E3 1.0 EB 1.1 E8 .52
Cheek, tensed 60 1.9 E3 1.3 EB 2.7 E8 .55
Neck 72 3.0 E3 2.9 EB 6.1 EB .47

leading to
Totai, relaxed 40 1.4 E3 .7 EB .9 ES8 .50
Total, tensed 66 1.1 E3 .9 EB 1.9 EB .51

Q is computed here from f_, L, and R. (The ishizaka et al data on tensed
cheek stiffness is probably victim of a froof error. Value must be
213=10° instead of 33.3z103 dyne/cmzcm® to be consistent with f,.)

Fant, Nord, and Branderud (1976) showed the exterior wall vibrations to
be concentrated around the mouth and on the neck. They estimated the
total wall impedance by observing the resonance of the closed vocal
tract. With the subjects operating the tongue it could be divided into
the contributions from cheeks and neck. Their method does not give any
measure of the wall compliance. From Fant et ai | get the foilowing
values of L and R, recomputed into Sl units

total cheek neck
f, L R L1 RI L2 R2
Hz Ns2/m> Ns/m°
5 males 38 1.1E3 .53E6 3.8E3 .75E6 i.5E3 1.8BEB
7 females 47 1.4E3 .B3EB 3.2E3 1.9E8B6 Z2.4E3 1.5EB

where f, is computed here as wall resonance frequency under the
assumption of Q=1/2 with the given L and R.

As discussed by Wakita and Fant (1978) there is an unsettied discrepancy
between these sets of data as to the relative distribution between mouth
and pharynx of the wall inductance, but the agreement as a whole is
acceptable.

Tab 4.1
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4.1 TUBE BEND, HIGH FREQUENCY ABSORBER

In real spoken vowels you observe very little energy above, say 5 kHz,
which has a number of partial explanations: The glottal source may be
deficient at higher frequencies. Heat conduction and viscous losses are
relatively high. The detailed shape of the area function near glottis
(also including sinus piriformis) can have a pronounced effect on
spectral balance. Effects of cross resonances and bends. The latter are
in no way accounted for when modeilling the tract as a one-dimensional
line.

If the line is fed with an input representing the glottal flow it is
easy to remove the high frequencies by pre-fiitering them out from this
excitation. But when glottis itself is made part of the line it not
effective to lowpass filter the controlling glottis area time function.
Due to the non-linearities, especially near the important closure of the
glottis, high frequency components will be generated anyway. Further-
more, since we want to inject high frequency noise downstream the line
to model fricative sounds, we should definitely not fiiter the output of
the line to obtain the lowpass effect on vowels. The vowel lowpass
effect is thus a strategic problem with the line analog. In classical
formant synthesis the problem is handily aveoided by using separate
branches for vowel and fricative synthesis.

VA
o
N
(7N
'S
(T}

Fig 4.3. Simple approximation to a sharp bend in a line of
~abutting tube segments. Physical layout and partial wave
flow diagram.
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An attempt to simulate a bend was made with the following, admittedly
rather crude method. Imagine an angie bend in the line of tube segments
as in fig 4.3a. The wave leaving the last section before the bend can be
seen as only partially entering the next section. The remainder takes a
short cut around the corner and goes directly into the tube section two
steps away. Disregarding all refinements like unequal areas at the bend
this shortcut can be simuiated as shown in the flow diagram of fig 4.3b.
in essence then half of the appropriate waves are added to the regular
incident waves two sections away, and only the remaining half is taken
the regular way. it should be obvious from the flow diagram why the
shortcut has to extend over two sections rather than one.

Fig 4.4b shows the effect of this trick on the response from a uniform
tube. We do get high frequency attenuation. But aiso the formants are
shifted towards higher frequencies. This is due to the shortcut
diminishing the effective length of the tract model. Also the resonances
get increasing bandwidths toward higher frequencies, the length of the
resonator becomes poorly defined due to the shortcut. All are rather
drastic effects that can upset the accuracy of the model. it is clear
that this method is dangerous to apply and it has not been furhter
pursued.

Another attempt to accentuate the high frequency level drop was to
connect a high frequency absorber near the glottis end. It consisted of
a shunting series resonant circuit in form of a z domain complex zero
pair. It was similar to the wall vibration loss element, but having its
resonance at 6.5 kHz with Q=5. Because the frequencies where it is
active are high it was interfaced to the line using (1.93) and the basic
method of section 1.10. It is critical to do this properly to avoid
instabilities with effects contrary to those desired. The result for the
uniform tube is seen in fig 4.4c.
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Fig 4.4. Spectra from attempts at vowel bandwidth limiting.

a. Reference response of periodic impulse excited uniform tube
with ideal constant resistive losses.

b. Effect from simple simulation of a bend as in fig 4.3.

c. Effect from high frequency absorber near glottis.
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Fig 5.1. Computed flow vs area and pressure drop in a circular
tube of length 2 cm, showing regions dominated by kinetic drop,
laminar and turbulent resistance. The region of interest to
speech noise generation is indicated and plotted otherwise in
figs 5.2.
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S. NOISE GENERATION

Expressions for the noise generated at constrictions. Discussion
and experiments. Practical implementation.

The problem of quantifying the noise source at constrictions in the
voice organs is an elusive one treated in many classical works, notably
Meyer—F _ier (1853), van den Berg et al (1957), Heinz (1957), Fant
(17 ,4), Stevens (1971), Flanagan et al (1975), and the theory still iets
much to be found. Here some elementary reiations will be illustrated
and then some practical measures to incorporate automatic noise genera-
von in the line model are outlined.

5.1 THEORETICAL CONSIDERATIONS

-wwne @ circular constriction of area A and length |. By
excerting a pressure drop P, across it we induce a flow U =v_ =A. As we
saw in section 2.13 the Bernoulli equation links the pressure and flow
when we neglect effects from shape and friction. From that we can assume
a 'DC resistance’

R, = Po/U, = oxv /(2:A) = oxU /(2xA%) (5.101)
and a differential resistance Ry=dP_ /dU_ =2xR . This was brought out in
section 2.13 as a factor in the ’jet loss’ coefficient. If we formulate

it in terms of a loss coefficient D=R/2Z the corresponding (partial)
pressure drop will be

P, = Rxl=lU, = 22ZxDxlxU, = Z2xpzcxDxlzxU_/A (5.102)
There will also be additional terms of pressure drop due to viscosity
and turbulence. To visualize the dependence of differential pressure
from area and flow we use the results from the loss investigation. From
these D coefficients and eq (5.102) fig 5.1 was drawn. It accounts for
the kinetic (’jet’) drop and the laminar and turbulent resistances,
remembering that R and D are per unit length with the distributed
losses. The frequency dependent viscous resistance is not applicable
since we now consider a DC flow. For the same reason the smaller R, is
used for the jet loss rather than Ry- In fig 5.1 a constriction length
of 2 cm is used, an arbitrary but representative value. Once a length is
given we can combine and compare the discrete and distributed losses in
a single diagram. As was done in the earlier loss coefficient diagrams
this is divided into different regions in which each one of the three in
turn gives the dominant contribution. The magnitudes of this diagram
essentially compare to those in a corresponding plot with van den Berg
et al (1957).
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The major comment to make to fig 5.1 is that for all pressures and flows
typical with noise generation in speech the kinetic drop is by far the
dominant one. The drop due to laminar flow resistance dominates only at
very smail flows, close to a cutoff passage. its dominance here is in
itself important for the function of a model, but not for the problem of
noise generation. | take special notice that the drop due to turbulence
in the passage is small, and interpret this as an indication that the
major part of the noise is not generated in the passage but rather
downstream the constriction. The rationale is that the noise power
generated should be reiated to the mechanism by which the DC supply
power is used up. Further support in this direction is that it takes
time and distance for a lominar flow in a tube to break up into turbu-
lence. Thus the fiow in the short constricted passage may well be
greatly laminar despite a high Reynold’s number.

The relation between pressure, flow, and area is plotted a different way
in fig 5.2. The axes contain pressure and flow in the range of interest
for noise generation in speech, entirely dominated by the kinetic drop.
This latter fact permits convenient display of other quantities on the
axes. The pressure axis is thus directly marked also in particle velocity
using the Bernoulli equation. Different littera of fig 5.2 show lines of
constant area, lines of constant supplied power, and lines of constant
Reynold’s number.

The particular 2 cm constriction length of fig 5.1 was used just to
establish the range where the kinetic drop dominates. Once this is the
case the length does not affect the calibration of figures 5.2.

| want to make a special comment on not having a shape factor ’k’ in the
Bernoulli equation. This is elsewhere widely used to treat deviations
from the ideal case. Omitting it makes it possible to insert the
muitiple variables on the abscissa of figs 5.2. When necessary you can
instead account for shape effects by working with an effective areaq,
more or less differing from, and mostly smailer than the geometric area
('vena contracta’). It is then just as easy to use a ratio of effective
area to geometric. Anyway, neither this ratio, nor ’k’, is a constant
when flow is varied, not even with a constant shape.

The constriction has an inductance Lspxi/A. Let us further define a
critical frequency f_., at which the corresponding reactance wlL equals
the differential resistance ZR, as in (5.101)

f. = RZA(Zxmzl) = v /(22mxl) (5.103)

c

also put on a supplementary scale aiong the pressure axis together with
V,. This frequency is directly related to the particle transit time
through the passage, I/v,.
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The air rushing through the constriction will now give rise to noise,
let this be represented by a pressure source Pne

Our main problem is to find a practical estimate of its amplitude. For
that purpose we may refer to the classical finding of Meyer—Eppler
(1953), quoted by Fant (1960), Flanagan (1965), also used by Flanagan et
al (1975), saying that the noise pressure generated follows the general
proportionality law

2 2

P, ~ Re“ - Re.“, when Re > Re,, else D (5.104)
The noise pressure should be proportional to the Reynold’s number
squared, but biased off by some critical Reynold’s number Re.. Below Re,
no noise is produced. For plastic models Re, has been established around
1800, somewhat lower for real speech sounds. | rewrite the proportiona-

lity into the form
pp ~ (x = 1) where x=(Re/Re )2 > | (5.105)

Using the definition of Re, eq (2.2), and the relation between drea and
diometnr we can put
4xp?2 U2
Re? = # (5.106)
e 2 A

We now approach a formulation that is applicable to our model. At its
constrictions we can monitor the quantity U°2/A which then is proportio-
nal to Re? and form the quotient x

Re 4 ) U,?
)2«
c n uxRe A

X = (—)2 = — & (
Re

(5.107)

if this is less than unity we conclude that no noise is being generated
and the following steps are skipped. But if greater we evaluate x~1. For
high values of Re the noise source pressure will approach proportiona-
lity to x and hence to U02/A.

It is interesting to compare this noise pressure proportionglity to that
of the static pressure drop which we found from the Bernoulli equation
to be P, ~ (U,/A)2. This would then lead to

P, ~ (1-1/x) =P =A (5.108)
or with high Re, plainly p, ~ P,*A. This relation is further discussed

by Fant (1860), where he aiso points out thot the shape of the area has
an effect on the noise generation efficiency. In short a circular area
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is more efficient than a wide slit. The contours of equal p, after eq
(5.108), at 10 dB intervals, is shown in fig 5.2d.

When we for simplicity assume the internal impedance of the noise
pressure generator to equal the resistance Ry we find the corresponding
no-load noise flow generated to be
Upy2  AxA
u, = p,/Ry ~ 5 ~ Ug=A (5.1098)
A p=U,

This is just to show that we can just as well work with the proportiona-
lity u /U, as with p,/P,, naturally they follow similar laws. Repeating,
but this time with the inductive reactance wlL mentioned before (5.103)
will again give the same proportionality, but this time augmented with
the factor f_/f. This may be of significance provided the noise source
is located inside the constriction. It may justify special spectral
siope shaping of the noise working with flows in the analog.

The spectral shape of the noise generated is an important property.
Stevens (1971) illustrates the noise to have a broad peak at the
frequency

f.=0.2%v,/d (5.11M

which is also shown with contours in fig 5.2c. In noise consonants f is
typically 2-3 kHz except for aspirated sounds where it may lower down to
500 Hz. The basic spectrum shape after Stevens is shown in fig 5.3. The
characteristic dimension d relates to the area over which the noise
pressure excerts its force. Depending on circumstances in the geometry
it may, or may just as well not, equal the constriction diameter.

Let us put the Re? proportionality in contrast to other findir~ or the
same Stevens (1971) paper. Drawing from different works in aerodynamics
he arrives at a basic proportionality

Py ~ PO*\/ﬁ_O::«A (5.111)

Fig 5.2e shows contours of equal P, using this formula. Though this is a
somewhat different proportionality, Stevens found it compotible to the
Meyer-Eppler data.

When discussing the noise source in the vocal tract things are still
more complicated. In the first place the noise is spectrum shaped by
vocal tract filter function, in the second the load on the pressure
source, and hence the power eventually reaching the output, depends on
the tract shape. These factors are properly accounted for by the line
model as such. But still the amplitude of the source itself is
influenced by the tract shape. For instance Stevens notes that for the
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quite reasonable assumption of an area function uniformly scaled with
the constriction area would lead to p, ~ P,. This is an extreme
deviation from the Re? proportionality and would give vertical equal
noise contours in fig 5.2.

Finally it is necessary to state what we mean by noise pressure p,
having frequency range in mind. On one hand it may be the pressure
pertaining to the total frequency spectrum generated, whichever this may
be. This is the background for the proportionalities given by Stevens.
On the other it may be specified within a fixed frequency band, for
instance the one we would cover in a speech synthesizer. Here the noise
generator should most preferably represent a spectrum density level
rather than a total power. The Meyer—Eppler data is of the latter type,
they were obtained from real speakers and thus include the vocal tract
filtering.

Conversion between these two meanings of p, requires knowledge of the
spectrum shape. Trying this conversion with the spectrum of fig 5.3 is a
bit complicated, but does at least in part explain the difference in
slope between the equal noise ievel contours of figs 5.2d and 5.2e.

This is not the place to argue which formula is more or less right.
Paying regard to the many different factors that influence the magnitude
and shape of the noise tends to make a practical system overly complex.
Also there is little hard data in the fricative noise literature as to
what happens in the marginal regions of noise generation, those with
small area (low flow) and large area (low pressure drop). To serve as a
guide to a working compromise a classical nozzle-blowing experiment was
repeated, with an attempt to approach these limits. Circumstances,
measurements, and resuits are shown in tables 5.1 and 5.2.

In a first experiment air was blown into free space. This is convenient
to establish a source spectrum shape, but gives experimental troubie in
validating a critical Re;, because of the rather low noise levels
obtained. The second experiment included a downstream cavity for a 4 kHz
resonance to improve measurement range at this frequency. Moreover an
obstacle was placed in the jet which increased the level up to as much
as 20 dB. This again should be an argument that the natural speech noise
source is located downstream the constriction. With an intraoral
constriction the air jet will more likely than not strike a wall. This
will increase the area subject to the fluctuating noise forces. The
consequence will be louder noise and a shifted spectrum as per eq
(5.110). Equal noise contours at 4 kHz from this experiment are shown in
fig 5.2g. The obstacie having constant dimensions was naturally less
effective with a large nozzle diameter. This shows up as a marked bend
in the contours at large areas. As could be feared the critical Re; is a
function of the constriction area.
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d. Contours of equal noise level according to the Meyer-Eppler
rule, eq 5.108.
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Table S.1.

Measurement of noise generated by air streaming out from cylindrical
hole with sharp edges of axial length 10 mm and diameter d. Hole is at
end of 20 mm diam feeder tube in anechoic chamber. Supply from variable
transformer feeding reversed ’Nilfisk’ vacuum cleaner and appr 6m of
diam 40-25mm tubing.

Supply flow measured by 'VEB Pruefgeraete’ airflow meter 200-2200 I/h
(56-811 ml/s). Flow U is shown recomputed into ml/sec, at instances
estimated.

Supply pressure measured with water manometer, given as P in mm H,0.

SPL measured with A’ weighting and octave analyses around 2, 4, and 8
kHz using ’Bruel & Kjaer’ Prec sound level meter type 2215. Microphi..
perpendicular to, 100 mm away from exhaust axis, and 100 mm downstream.

First line is background noise.

d P U LA L2 L4 L8 v de Ae fn " m
mm mmV mi/s| dB dB dB dB | m/s mm mm 2 kHz dB
0 200 0 |20 11 12 14 - - -

1.4 38 31e{25.0 14.5 15.0 18.0 [25.4 1.24a 1.21a 4.1 1= 7
1.4 113 53 (36.5 21.0 22.0 29.0 {43.8 1.24 1.21 7.1 25.8
1.4 306 78 |40.5 24.0 28.0 34.5|72.0 1.17 1.08 12.3 31.1
2.0 29 56 (25.5 17.0 18.5 19.5 |22.2 1.79 2.52 2.5 18.8
2.0 74 89 |36.0 21.2 22.8 29.2!35.4 1.79 2.51 4.0 <o.c
2.0 187 136 |43.5 26.2 29.0 37.2 |56.3 1.75 2.42 6.4 33.3
2.0 292 187 |47.0 28.0 33.2 41.0|70.4 1.74 2.37 8.1 37.0
2.8 8 56 | - - - - 11.6 2.48 4.83 0.8 -
2.8 26 100 |31.5 22.5 22.8 23.8 |21.0 2.46 4.76 1.7 23.3
2.8 57 144 |41.0 23.5 26.2 33.7 |31.1 2.43 4.63 2.6 30.1
2.8 109 194 |50.0 28.0 31.2 41.5 |43.0 2.40 4.51 3.6 36.6
2.8 286 319 |{52.0 35.0 39.0 47.5 |{69.6 2.42 4.58 5.8 43.3
3.9 9 131 |26.0 18.5 16.5 - 12.4 3.87 10.56 0.7 15.4
3.9 22 200 (33.0 24.5 2B.5 25.3 |19.3 3.63 10.368 1.! 25.5
3.9 52 306 [43.0 32.5 36.0 37.5 |29.7 3.62 10.30 1.6 36.4
3.9 102 422 |s0.2 39.0 43.0 46.3 |41.6 3.60 10.14 2.3 44.3
3.9 222 622 |58.2 45.8 49.0 55.5 |61.3 3.60 10.15 3.4 ©=72.3
3.9 315 742e|62.6 48.5 52.0 58.0 |73.1 3.60ac 10.15a 4.1 55.5
5.8 2 136 |25 - - - 5.8 5.46 23.45 0.2 -
5.6 12 306 |37.0 31.0 27.0 20.5 |14.3 5.22 21.40 0.5 23.9
5.6 34 506 |48.0 42.0 39.5 35.5 |24.0 5.20 21.08 0.9 37.6
5.6 93 1043e(58.5 52.5 52.0 49.5 |39.7 5.20a 21.08ac 1.5 50.6

a indicates assumed value

e indicates values estimated from measurement and assumption

Velocity from strict kinetic drop: v=v2z=P/p=vV2%P/1.18
Effective area from flow and velocity: A =U/v
Effective diameter:

de=

VZ*U-/-TI:*V

Outside flow meter range, from assumed eff area and veloc: U =A_xv
Noise peak frequency after Stevens: f =.2:xv/d,
Mean level in speech band: Lm=(L2+2=%L4+4xL8)/7

Tab 5.1




Table 5.2

Measurement of noise generated by air streaming out from cylindrical
hoie with sharp edges of axial length 10 mm and diameter d. Hole is at
bottom of 17 mm deep cavity in 20 mm diam feeder tube in anechoic
chamber. Supply from variable transformer feeding reversed ’Niifisk’
vacuum cieaner and appr 6m of diam 40-25mm tubing. Jet crossed by 2 mm
wide thin plate strip 15 mm downstream nozzle. This obstacle increases
sound level considerably. Cavity gives formant resonance around 4 kHz.

Supply flow measured with 'VEB Pruefgeraete’ airfiow meter 200-2200 i/h
(56-611 mi/=>, Fiow U is shown recomputed into mi/sec. Supply pressure
meas''~ . with water manometer, given as P in mm H,0.

oPL measured with octave analysis around 4 kHz with 'Bruel & Kjaer’' Prec
sound level meter type 2215. Microphone perpendicular to, 100 mm away
from exhaust axis, and 100 mm downstream.

First line is background noise.

d P U La v A,
mm mmW mi/s| dB m/s mm 2
0 200 0 11 - -

19 21e | 40.07 17.0 1
37 30e | 42.5 25.0 1
67 40e | 48.5 33.7 1.
150 58 55.5 50.4 1.15
« 150 58 38.0 50.4 1
330 83 61.5 74.8 i

L]

11 72 42.07 13.7 5.26
17 83 45.0 17.0 4.89
48 117 54.0 28.5 4.11
88 181 62.0 38.8 4.66
* 89 181 42.0 38.8 4.66
318 72.0 70.4 4.53

. . .

2e 150 13.0 6.4e 23.40a
Se 208 24.0 8.9e 23.40a
7e 258 36.0 11.0e 23.40a
12 333 45.5 14.3 23.28

25 472 55.0 20.6 22.91
66 768e | 65.5 33.4 23.00a
125 1058e | 76.5 46.0 23.00a
208 1369e | 83.5 59.5 23.00a
58 722e¢ | 66.0 31.4 23.00a
= 58 722e | 57.0 31.4 23.00a

DO NNDND OOONOE DAEDADLA
N
O
N

uttaouoinnian NNNNNN

indicates gssumed value

indicates values estimated from measurement and assumption
indicates the obstacle was removed to show drop in sound level.
indicates unstable, intermittent noise, at times with whistles

N0 Q

Velocity from strict kinetic drop: v=V2=P/e=v2:P/1.18

Effective area from flow_and velocity: A =zU/v

Effective diameter: d =vV4xU/mzv

Qutside flow meter range, from assumed eff area and veloc: Uest=Aexzv
Low pressures estim from assumed eff area and flow: P=(p/2) = (U/A,)?

Tab 5.2



5.2 PRACTICAL IMPLEMENTATION

Having so many candidates for a noise level formula the foliowing
compromise has been seiected with support from practical tests in the
line model. The feature of the 1-1/x factor of (5.108) involving a
critical Reynold’s number is kept, the wvalue Re_=1800 seems to be
adequate. A strict proportionality between p, and P, tends to give a
somewhat disturbing background of noise also at iow Re. It would appear
reasonabie there should be no noise at ail unless a critical Re_ is
reached.

The final factor of area in (5.108), (5.109) has been dropped so that
for large Re we simply have the proportionality p, ~ P,, but we never
reach these Re with representative speech. This selection is not to say
that the original formula is bad. But with the stiff control of the
model practised so far there will easily be a pronounced pinch” effect
in producing fricatives when the area reaches too small a minimum new
the middie of the sound. Dropping the area releives this effect to some
extent. The same can otherwise be reached with a more elaborate control
allowing the intraoral pressure to widen the constriction passage.

To illustrate my proportionality formuia used:
P, ~ Py » (1=-1/%) (5.21)

fig 5.2f shows the noise pressure p, on an arbitrary dB scale in the
plane of pressure drop P, versus flow U,. The proposed relation appears
to merge the desirable features of the theoretical formulas. Aiso,
consider the load line from a DC pressure generator (assume 800 Pa = 8 em
H,0), with on internal resistance to give a limited short circuit flow
(assume 500 cm3/s), dashed in fig 5.2g. This will give an essentially
constant noise level over a considerable range of areas, there is thus no
need for particular precision in the ’articulation’.

The automatic noise generation procedure can be performed as follows
First the narrowest tube downstream glottis in the line analog is
located. It is hardly meaningful to inject noise from more than one
supraglottal source at a time. Each sampie interval the net flow U is
evaluated here, and an average value is established. This averaging is
to find the pseudo-DC flow rather than the momentary wvalue. This is
necessary to prevent instability caused by the noise subsequently
injected. It is convenient to perform the averaging as a simpie first-
order lowpass filtering in the z domain. Thus from the input value U we
can obtain the average

Ugi= (U — Ugxz~')/Ng, + U xz"! (5.22)

where UO*Z'l is the value saved from the previous sample interval, and
N,, is the averaging time constant counted in sample intervals. For
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example N, =40 at 16 kHz sampling would give a time constant T=40/16000
8=2.5 ms corresponding to a LP cutoff at 1/(2xntxT)=64 Hz.

Using U,, the area A and a proportionality constant including Re, we
then find the vaiue of x as in (5.107). If this is greater than unity we
go on to form the gain coefficient 1~-1/x. Finally we compute a momentary
noise flow value

u, = Uge(1-1/x)=c =K, (5.23)

n
where K, is a proportionality constant telling the conversion efficiency
from DC flow into noise flow. Empirically its order of magnitude is
arcund 0.01. ¢, is a random number different for every sample interval.
The c, signal should be of approximately unit average magnitude, zero
avernne and properly spectrum shaped. For practical purposes it may
suffice with simple differentiation from a sequence of square distri-
buted random numbers, but more elaborate noise prefiltering can of
course be done.

The final step is to inject the noise into the line, and that is done
simply by adding u,, to the existing partial waves (compare eq (1.112)).
Two notes have to be made now about into which tube to inject the noise.
One considers if to take the narrow one by which we computed u, or some
tube further downstream. The other is to watch for the correct pair of
forward and backward waves. As can be understood from section 1.6 only
one half of those pairs will be used for the scattering computations
forthcoming.

The exact location of the noise source has consequences for the
resulting output spectrum of the line analog. This topic was discussed
by Fant ( 1860) and has a continued interest, see e g Shadle (1983). With
the source inside the constriction it will couple strongly to the
upstream cavity at the resonance of the narrow tube. This causes zeroes
in the spectrum even if these are easily concealed by low Q values due to
the jet loss (the f_ scale in figs 5.2 has a connection to the bandwidth
of the zeroes). A downstream source will give a more efficient excita-
tion of the front cavity resonances.
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Fig 6.1. Network representation and
signal flow diagram for the demon-
stration program of table 6.1. The
system is supplied with a forward
wave P;/2. In case of total reflec—
tion at a closed glottis the back

ward wave will be equal and add up
to a feeding static pressure Ps.
Since the backward wave is neglec-
ted the lung termination is reflec-
tion free, hence the generator to
the left of the dashed line is
matched to the line impedance Z,,.
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Fig 6.2. Simulation of glottis using an f-v continuity model,
including laminar and jet resistance. From bottom to top: glottal
area, glottal flow,
pressure, with full scale values shown. Results are visually
identical with either pressure or flow wave analogy.

glottal particle velocity, and intraoral

The little frames to the right are explained with fig 6.4,

Fig 6.1, 6.2
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6. INTEGRATING GLOTTIS WITH
THE LINE ANALOG

Simulation of glottal flow modulation applying nonlinear pres-
sure drop correction or kinetic resistance. Function of the
dynamic models.

Provided necessary corrections are inciuded it is possible to treot the
glottis as an integrali part of the line anaiog. This has aiso been
practised concurrently by Titze (1983). Advantages are obvious that we
can then supply the line with a one-dimensional puimonic pressure, and
ever ' _cter, continue the line upstream to include a model of the
.«chea. The model will automatically account for the interaction of
orai resonances on the giottai flow.

Titze simulated a parametric glottal model as part of a pressure partial
wave analog. Seen as a component in the line his glottal model is a thin
wall inserted between two tubes, and with a small hole having the vari-
able glottis area. Accounting for the kinetic drop he derives a special
ernttering expression for this glottal joint. Though underiying theory is
the same his result comes out formaily different from the one here
because of the differing physical layout.

It is fully practical to model aiso the mechanical properties of the
glottis, but no attempts in that direction will be made here. Instead
the giottis area is regarded as an input forced on the line model.

The method | have used is to let one specific tube in the line represent
tha alottis, the reason is for simpiicity of program structure: the
glottis is just one tube like any other in the line. However the changes
in glottal area are fast, so special recomputations of reflection
coefficients and loss factors have to be made each sample interval for
this tube.

For the ardent reader tabie 6.1 lists a commented Basic program,
intended for experimentation on a personal computer. It simulates such a
glottal valve section in a uniform tube, terminated by a total reflec~
tion at the lip end and without reflection toward the lungs, fig 6.1.
The glottal area function of time is just a half sinusoid. To avoid
numerical trouble the classical trick is used, area is limited downwards
to a very small value (0.1 mm?) rather than exactly zero. The program as
such is a bit complicated with numerous conditional statements. This is
to have it handie any of the many reflection models treated in section
1. It also includes the kinetic correction, laminar resistance, and jet
loss resistance. The inclusion or omission of those features is chosen
by the operator on setting switches at the start of the program. This
program, augmented with plotting instructions, has produced the figures
of this section.
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Fig 6.3. Simulation of glottis using an f-v continuity model.

a. With laminar, but excluding kinetic correction or jet resistance.
Glottal velocity reaches unrealistic values, and so does the
interaction ripple on glottal flow.

b. Excluding all losses (scales are reduced). Glottal velocity
and flow avalanche, still the intraoral pressure shape does not look
unreasonable.

In this degenerate example we can see the magnitude of the
backward wave in tube | reaching rather large values, there are
temporary negative subglottal pressures here!

Fig 6.3
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Fig 6.2 shows a representative ’correct’ result. From bottom to top it
displays the glottal area, the glottal flow and particle velocity, and
the intraoral pressure immediately downstream glottis. The particle
velocity is not too interesting in itself but is good for diagnostics on
b-w the model works. Initially this velocity is zero in the quiescent
system but soon reaches an equilibrium determined by the resistance and
the kinetic drop. During the open glottis phase the velocity and fiow
fluctuate due to pressure variations at both sides of glottis. Here the
kinetic drop is wvery important to make the flow settle to realistic
values. Take fig 6.3a with only iaminar resistance to see what happens
wits 1. It is essential not only because of magnitude but also
because of its nonlinearity. This nonlinearity will influence the
relative magnitudes of peak filow and ripple flow. Without any loss
components the velocity and flow will avalanche as in fig 6.3b having
reduced scales. Looking just at their shape may be misleading.

The glottal closure is the really critical point. Here the slope of
glottal flow is a major determinant of spectrum level in the speech
signal generated. | find the various refiection models can be put in two
groups regarding their ability to cope in this application.

One group that works: the f-v adjustment and the Strube model, using
either pressure or flow waves, and, amazingly, the static pressure wave
model. The differences between their results are too minute to show up
in the plots though the methods to get there are different enough.

The fact that the static pressure wave model happens to behave just as
well as the proper dynamic ones is a consequence of the specific area
conditions at glottis. Look for instance at the dynamic correction term
in the Strube pressure scattering formuia (table 1.1). It is proportio-
nal to the giottal area change divided by the neighbour tube area. At
the glottis this neighbour area is always comparatively large so the
dynamic correction will be very small. (in the corresponding filow
analogy formula the correction is proportional to the impedance change,
and then it is by no means small).

The other group can not manage the cutoff: the P-U adjustment, the Maeda
model, and the static flow wave analogy. Fig 6.4a shows the degenerate
behaviour of the latter without losses. Once glottal flow has got
started you cannot stop it. The P-U dynamic models may even be
disastrously unstable in some low loss cases.

Again, this is no wonder, these dynamic models were explicitly designed
for flow continuity, and the static one is it implicitly. Such continui-
ty corresponds to a large series inductance trying to maintain flow. A
danger is, that using elaborate enough loss resistances, they can be
patched up to look about right, fig 6.4b. This inductance brings a
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Fig 6.4. Simulation of glottis using a P-U continuity model.

a. Excluding all losses. The flow continuity has the absurd
consequence of disabling the glottal cutoff.

b. With Ilaminar and jet loss resistances. The system is
marginally unstable at glottal closure. It has momentary negative
flow and extreme partial wave magnitudes in the glottal tube 2.

The little frames to the right show partial wave magnitude ranges
(except first 10 samples) in tubes 1, 2, and 3, separately for
the backward and forward waves. All are normalized to the
constant exciting forward wave in tube 1. In each frame the
magnitude scale is logarithmic from 10~2 to 10°. The frame sets

marked P pertain to the pressure wave analogy and the ones marked
F to flow.

Fig 6.4
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pronounced time skew in glottal flow as compared to glottal areaq,
something observed in real speech, but here it is artificial. As
elaborated by Ananthapadmanabha and Fant (1982) this skew is due to the
vocal tract load, and in reality the glottal inductance is probably
insignificant. The skew is present to a realistic degree in fig 6.2.
There it can easily be inferred from the slope of glottal velocity
during open glottis, glottal area being symmetric.

The obvious method to account for the kinetic drop is to correct the
scattering equations as was shown in section 1.13. This implies the
evaluation of an uncorrected net flow, and from that the non-linear
derivation of a correction flow to insert into the scattering equations.

A different method is to account for the same dynamically varying
pressure drop by means of the jet loss of section 2.13. Then the jet
uss factor is evaluated using the existing net flow. Then this loss
factor is put into the series loss corrected scattering equations of
secti~~ .8. Thus the kinetic drop is accounted for with just a
resistive loss term, albeit flow dependent, on equal foot with any other
resistance we would care to account for. | find this a significant
simplification compared to the direct treatment of the kinetic drop.

These two methods account for the same thing, but the underlying
derivations were set up from differing aspects. What should be warned
against is of course to apply both corrections simuitaneously. Putting
the jet loss resistance at the input to the glottal tube gives a resuit
indistinguishable from fig 6.2.

The jet loss resistor may aiso be moved to the next tube joint, the exit
of ’glottis’. Then the particle velocity will get a slightly higher peak
at glottal closure. One could say that too much air has been let into
the glottal passage at closure, and at the exit it is a little too late
to stop it.
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DIM DELIN{SO0}  ’DELAY LINE FOR UNIFORM VOCAL TRACT

Tab 6.1 Experimental program in

DEFINT ¥ *INTEGER VARIABLE NAMES BEGIN WITH LETTER N Basic language to simulate glottal
LEE=350 ‘mls SPEED OF SOUND valve and a uniform resonator tube,
RHO=1.14 kg/a3=Ns2/a4  DENSITY OF AIR fig 6.1. Depending on switches set
M=, 0000186 "Ns/a2 VISCOSITY OF AIR by the operator any of the simula-
FI=3.14159 tion models can be used. Kinetic
AGNAY=.00003 a2 PEAK BLOTTIS AREA, =0.3 cal correction and jet and Ilaminar
AGNIN=, 0000001 ° HININUN AREA, =.1 am? losses can be applied.
ATUB=, 0004 ‘g2 UNIFORN YOC TR ARER, =4 oa?
PO=800 ‘N/nl LUNG SUPPLY PRESSURE ™ 8ca H20 Bracketed numbers to the right
10 =.01 4 PITCH PERICD, FO=100 Hz indicate corresponding equations in
Tal=. 0001 ’s GAMPLING INTERVAL, 10 kHz SAMPL the text.
DL=CEEsTAL/2 " TUBE SEGMENT LENGTH
NDEL=,175/DL ! # OF DELAY LINE STEPS p VT LENGTH=.170m

? {DNE STEP FOR EACH TWD TURE SEGNENTS)
10=RHOSCEE/ATUR *Ns/aG TUBE ACOUSTIC IMPEDANCE

TEEEBSALESAIFERIIRSRSI S804 REQUEST FUNCTION SWITCHES FROM OPERATOR 3s233ss
INPUT “Press analogy? (P)";SPRS$: IPRS=-1 *SWITCH PARTIAL WAVE ANALDGY
If {(SPRS$="P"} OR {(SPRS%="p"})) THEN {PRS={ *{PRS=1:PRESS, =~1:FLOW
INPUT “Dyn: -2=Strube, -1=Maeda, 0=Static, 1=P-Y adj, 2=f-v adi";iDHD
*ADMD SELECTS TYPE OF DYNAMIC MOBEL

INPUT "Kinetic corr? “;¥KIN  "XKIN SELECTS KINETIC CORRECTION

INPUT "1-2 Jet loss? *yXit *¥dn SELECT IF AND WHERE T8 INSERT JET

INPUT “2-3 Jet loss? “;Xd2 ’ LBSS RESISTANCE

IMPUT “Lam resist?  “j;XLAN  YLAM SELECTS LAMINAR RESISTANCE CORR
DLIM=9.9:1F XJ1+XJ2+XLAMCO THEN INPUT “D limit?  ";DLIM  “MAX LOSS FACTOR

IF DLIM=0 THEN DLIN=9.9

PRINT * PO Dyn Kin H2 J23 Las Deax";
If IPRS=1 THEN PRINT *  PRESS®

IF XPRS(}1 THEN PRINT *  FLOW

PRINT USING "#%44,4°;P0; DNO; XKIN; X313 X32; XLAM; DLIN

! INITIAL SETUP OF VARIABLES

FOR I=0 TO NDEL:DELIN(I)=0:NEXT 1 TINITIALLY CLEAR V. T,

FOR3=0: FORZ=0: BAK3=0: BAK2=0 'TUBE 2 & 3 FORMW & BACKN WAVES
ABLT=NGRIN *INITIALLY “CLDBSED* GLOTTIS

FORG1=PO *REFERENCE INPUT FROM LUNG PRESSURE

IF XPRS{>1 THEN FDRO1=PO/I0 'CONVERT FOR FLOW ANALOGY

FOR1=FOROL/2 *CONSTANT FORWARD FEED INTO TUBE i
BAKI=FOR1 *{THIS IS REDUNDANT FOR THE SCATTERING)

Passstssssrssasasssasassassaasss CONPUTATION LOOP sssaaassasstsss
FOR ¥=-,0010 TO .0070 STEP TAU 'DEFINE TIME SPAN OF LOOP

EERERE2EEREEE 2

ADLD=RGLT:RFCO=RFAL *SAVE PREVIOUS 6LOTTIS ARER, REFL COEFF
AELT=RENAXISIN(CIPIST/TO) 'AND MAKE THE ACTUAL ONE RS A GINE ARC

IF AGLTCABMIN THEN AGLT=AGMIN  ’LIMIT AREA DOWNWARDS
RFAC={ATUB~AGLT)/ (ATUB+AGLT)  ’REFLECTION COEFF AT JOINT i-2,

{115

- WAVE ADJUSTHMENT IN TUBE 2 -
IF {DMB<=0 8070 550 "HAEDA, STRUBE OR STATIC, NO ADJUSTMERT

IF ¥pm>=2 6070 320

IF XPRS(H1 THEN PD=(FOR2+BAKZ)#{1-ABLT/AOLD) /2 *P-U ADJ TUBE 2 t1.40)
IF ¥PRS=1 THEN PD={FOR2-BAK2)3 (AGLT-ADLD)+.5/ABLY THHEN (DNO=1

FOR2=FOR2-PD: BAK2=BAK2+XPRS3PD: BOTO 530
IF XPRS(:t THEN PB={FOR2-BAKZ)(1-AGLT/AOLD)/2 T§-v AN

TUBE 2 {1.4%)

IF ¥PRS=1 THEN PD={FOR2+BAK2)* (AGLT-ROLD)*.5/ABLT WHEN ADND=2

FOR2=FOR2-PD: BAK2=BAK2-XPRSSPD

e FIRST PASS: COMPUTE DD NUMBERED FOR AND EVEN BAK PARTIAL WAVES --------

-~ - CONPUTE AT JOINT 2-3, HAVING -RFAC -------—--—

PN=-RFAC+ {FOR2-XPRS*BAKI) *COMMON SCATTERING TERM {1.18), (1.23)
IF XDKO=-1 THEN PN=-RFCOs{FOR2-YPRSsBAKI) "HAEDA {1.32-49)
DE=XLANs2sF T eHUsDL / (RHOSEEESABLT) LAMINAR LDSS FACTOR/Z, SWITCHED BY ILAM (2.5
D=0:1F ¥42=0 BOTO £30

U2=FOR2-BAKZ: IF APRS=1 THEN U2=UZ$AGLT/{RHD+CEE) ! 11,12}, {1.21)
DJ=ABS{, SeU2/ (CEESAGLT)) ’JET LOSS FACTOR £2.12)
D=DG+DJ#¥a2: IF DDLIN THEN D=DLIN ’TOTAL SERIES LOSS FACTOR
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640 iF ¥PR5=1 GOTO 460

650 URF={{1+RFAC) sFOR2-{1-RFAC) +BAK3) *D/ (14D} 1 URB=URF 1 60D 470 ’ {1.86)
540 URF={FOR2-BAKZ) D/ (1+D) sURB=URF# {1 +RFAC) sURF=URF+ (1-RFAC) *LOSS CORR {1.87)
870 FORI=FORZ+XPRGPN-URF *SCATTERING WITH LOSS CORRECTION

480 BAKZ=BAKI+PN+URB

630 IF XDMB(>-1 6070 720 *SENSE IF MAEDA DYNANIC CORRECTION

700 IF APRS(}1 THEN BAKZ=BAK2+{FOR2+BAK3) #{AGLT-AOLD) / {AGLD+ATUB) ’HAEDA FL {1.32-9)
110 IF %PRS=1 THEM BAK2=BAK2-(FOR2-BAK3)s(ADLD/AGLT-1)/(1+AOLD/ATUR) " N PR

720 IF XDMDC-2 BOTD 760 *SENSE IF STRUBE DYNAMIC CORRECTION

730 IF XPRS(>! THEN USTR=FORZs{1-AGLT/AOLD)/ (1+AGLT/ATUR)  "FLOW ANALOGY

740 IF 1PRS=1 THEN USTR=FOR2*{AGLT-AOLD)/ (ABLT+ATUR) FRESS ANALOGY {1.33-6)

730 FOR3=FOR3-USTR: BAK2=BAKZ-XPRS$USTR
780 T emoe- SECOND PASS: COMPUTE EVEN NUMBERED FOR AND 8DD BAK PARTIAL WAVES --—-----

1L e -=-- COMPUTE AT JOINT 1-2, HAVING +RFAC --—-----m--

780 PN=RFAC3 (FOR1-XPRS$BAKD) *CONMON SCATTERING TERM {1,186}, {1.23)

190 U2=FOR2-BAK2: IF YPRS=1 THEN U2=UZsRGLT/{RHOSCEE) ! {1.12}, .11

800 PE=0:IF XKIN=0 G0TD 880 "SKIF IF MO KINETIC CORRECTION

81 IF XPRS (31 GGTO 860

820 POB=2+ (FORL-BAKD :FE=-AKINSPOBSRBG (POR) / (1. SoABS (POB) ¢ 24RHO2LEESCEE) 7 {1,427}, {1.128041.125)
830 FOR?="" ...+ 1+RFAC)$ (POB+PE) /2 'KINETIC CORR, PREGSURE ANALOGY {1.1211)

o oik1=FORY-{1-RFAC)* {POB+PE} /2
950 8070 90

864 HO=FOR1-BAK2-PN: YO=UQ/AGLT *UNCORREETED FLOW AND VELOCITY {1.122)
870 PE=-XKINsUQSABS (U0) / {1, S9ABS (HO) +23CEESAGLT} 'KINET CORR FLOW (APPR) {1125
880 FORZ=FOR1 +{PRG3PN+PE: BAK1=BAKZ+PN-PE *SCATTER ¥ KINET CORR (L1
8%0 IF 441450 THEN DJ=RBS{.3aU27 (CEEAGLT)) *JET LOGS FALTOR {2.12)
00 D=DG6+DJ*Xdt: IF DXDLIM THEN D=DLINM *SETTLE LOSS FACTOR

10 IF D=0 6018 970 *SKIP IF NO RESISTIVE LOSSES

920 IF 1PRS={ BOTO 930

§30 URF=( {1 ~RFAC) sFOR1~ {1 +RFAC) 3BAKZ) D/ (1¢D) 'LOSS CORR WITH FLOW {1.86)

40 URB=URF:6070 40

750 URF=(FOR1-BAKZ) 3D/ (1+1) 1 URB=URF# (1-RFAC) s URF=URF+ {1+RFAC) "CORR W PRESS {1.87)

360 FOR2=FOR2-URF: BAK1=BAK1 +URR CORRECT FOR SERIES LOSSES

34 oo SIMULATE V. T. AS UNIFORM TUBE ---------m-----

980 BAK3=-1 'sDELIN{NDEL) "RETURNING FROM TOTAL REFL AT LIPS

990 DELIN(1}=FOR3 'TUBE 3 BOES INTD DELAY LINE FOR V.7.

iwed  rum icppEL-d T3 L STER -1:PELINCI+D)=DELINCININEXT I “UPDATE DELAY
1010 Tsasssasssasssassasssassasassasy DISPLAY RESULTS ON CRT SCREEN sssssssassssssss

1020 Ui=FOR1-BAK1:U2=FBR2-BAK2:IF XPRS(1 6OTD 1040 THET FLOWS | AND 2 {1.21)
1030 Ui=W1/10:U2=U2+ABLT/ (RHDSLEE) 'PRESS ANARLOGY

1040 VZ=U2/A6LY TYELOCITY 2

1050  Pi=(FOR1+BAKI) :PI={FOR3I+BAK3): IF XPRS=1 6OTD 1070 'TOT PRESS | AND 3 {1.12a)
1060 PY=PIsI0:P3=P3s10 "FLDK ANALDGY .21}
Wi

1080 SUT$=", 1 . . . . 1 . g
1082 ’GCREEN DISPLAY RASTER DIVISIONS

1090 NS=AGLT+1E+04: SK$="a":605UD 1230 "10 sa2/div, GLOTTAL AREA

1100 NS=10+U2s50000!:5K$="U": 60SUB 1230 7200 cad/sec.div, GLOTTAL FLOW
110 NS=VZ: Sk$="v"; 6OSUR 1230 10 a/s.div, BLDTTAL VELOCITY
H120  NS=60+P3/100:  SK$="p":6OSUR 1230 *{ kPa/div, ORAL PRESSURE

1130 NG=60+P1/100:  SK$="s":605UB 123¢ 1 kPafdiv, SUBGL PRESSURE
{140 NS=50+10sFOR2/FOR1:IF XPRS=1 THEN NG=30+FORZ/{Z*FORL)

HE0  "5K$="{":605U8 1230 *HORMALIZED FORWARD WAVE 2

1160 NS§=G0+10sBAKZ/FOR1:IF XPRS=} THEN NG=00+BAKZ/{2sFORL)

1170 ’5K$="h°:608UB 123 "HORMAL 1ZED BACKWARD WAVE 2

1180 PRINT SUTs

190 REXT 1 “ssa3a33 END MAIN LOOP ssra33s3a8y

1200 GOTO 180 *START ALL OVER

1220 Tssassaassases SUBRDUT TO INSERT CHARARCTER SK¢ INTO CRY DISPLAY LINE ssassssass
1230 IF NS>78 THEN RETURN 'SKIP IF DVERRANGE

1240 IF NS¢0 THEN RETURN
1250 SUTSsLEFTS{SUTS,NG) +SKS+RIDS{SUTS, H5+2, 7B-NG)
1260 RETURN

Tab 6.1



S

H| h/w,

B H

- s/w
L+ 3
A 2

= % .,
’2 =

1 A H H g —
0 2 4 6 B —>w,t

Fig 7.1. Normalized impulse and step responses of third order

parameter smoothing filter.

1 i .
. 1+FK/100
E
£
0 Y

\‘\.. 2

] |
0 Time 100-TO/FG 10
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built from two half period cosine arcs with the glottal frequency
being FG percent of the pitch 1/T0. The magnitude of the second
arc is scaled by the FK parameter. Only the positive part of the

shape is used.
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7. DESCRIPTION OF PROGRAMS

Structure and editor for synthesis parameter files. Control
parameters. Synthesis main program and line simulation
subroutine.

Some key programs for operation of the line analog will be outlined. The
core is a subroutine for the actual line simulation which generates the
output synthetic speech wave. This is called by a main program reading
an input file of synthesis parameters and storing the generated
waveform. An editor to generate a phoneme library file can also generate
control parameter files for rule synthesis by simple phoneme concatena-
tion. Other auxiliary programs are used for display of parameters and
results, including formant frequencies computed from synthesis parame-
ters in the articulatory domain.

7.1 FILE STRUCTURES

The different files involved in the operation of the line analog are
compatible to the general purpose interactive ILS program system ((R)
Signal Technology Inc, S:ta Barbara, CA) in that sense that they all
contain an ILS file header. The purpose of this is primarily to make it
possible to use existing ILS programs and subroutines for analysis and
display of signals. The header occupies the first 64 16~bit words of the
file (IHDR(O) to IHDR(63)) and holds miscellaneous information such as
utterance identification etec.

There are two different kinds of files involved. One is files with
synthesis parameter data used to control the line simulation, the other
is signal waveform files produced as outputs from the simulations.

7.11 SYNTHESIS PARAMETER FILES

A key entry in the synthesis parameter file header is a number
NCHAN=IHDR(57) specifying the frame size. All data after the file header
is thus arranged in frames, each containing a corresponding number of
16-bit words. Two frames following the file header contain special
information for the interpretation of the subsequent data. The parameter
file is thus organized as follows:

a. 64 word ILS file header, including value of NCHAN

b. one NCHAN word frame with parameter names

c. one NCHAN word frame with smoothing time constants

d. an arbitrary number of NCHAN word frames with parameter data
e. one end frame containing the number -1 as its first word
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item b. is a list of parameter names where each name is represented by
two ASCH characters. The first two parameter names are always MK (for
MarK) and DR (for DuRation). Other parameter names are defined by the
operator using the parameter file editor, and unused space is padded
with zeroes.

ltem c. defines individuaily for each parameter a smoothing time
constant in milliseconds. This is used by the synthesizer program. After
the data frames have been interpreted the result is smoothed with the
time constant given here.

In item d. several consecutive frames may form a group that have an
identical value of the marker parameter MK. The value of MK is one or
two ASCIHl characters. It serves as an identifier in the parameter editor
program where it may signify for instance a phoneme, a diphone, or any
desired sequence of parameter values.

The essential purposes served by this structure are that the file within
itself documents its contents, and that the number and order of the data
items is arbitrary.

7.12 WAVEFORM FILES

In the waveform files produced by the simulation program the header
includes the sampling frequency, codes for the presence of pre-emphasis
etc. NCHAN=1 for ordinary speech files, but by appiication of switches
in the simulation program multichannel files can be generated. These may
for instance contain oral, nasal, and laryngeal waveforms in separate
channels.

7.2 PARAMETER FILE EDITOR

The editor for synthesis parameter files is a revised version of OVCON,
originally written for control of OVE cascade speech synthesizers,
Liljencrants (1969).

Before the editor is entered the parameter file is assigned as a
secondary file in the ILS system. When the editor is entered this file
is created if it does not already exist, and opened. The detailed
operations of the editor are performed in a work buffer in the computer
memory. The parameter file can now be set up and altered in many ways
using various single character commands, when applicable preceded by one
or more numerical arguments. The more essential of these commands are:
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N Define or delete a parameter name. Parameter names are always
two characters, the first of which is to be either A, B, F, G,
K, or P. The parameter names MK and DR are not accessible for

change.
T Define smoothing time constant associated with parameter.
M Define the data interpretation mode. In the time vs parameter

domain only certain points are assigned a value. in the so
called ’polygon mode’ these points are joined by straight lines
in the value vs time plane. Alternatively, in the ’square mode’,
the parameter value of one data point is held constant until the
time the next data point is reached.

] After this command the editor requests a string of characters.
The parameter file is scanned for frames having MK parameter
values matching those of the string, and the corresponding data
frames are copied into a work buffer. The marks in the MK
parameter may be single characters of pairs of characters. In
the matching process a matching pair takes precedence over a
single character match. This way one or several groups of data
frames are brought into the work buffer. In this buffer
individual parameter values can be accessed in terms of frame
number and parameter name, and aitered as desired. One
application of this command is to generate synthesis by rule
control patterns by simple phoneme concatenation.

L List contents of the work buffer.
P Plot contents of the work buffer as a set of waveforms in time.
U Add contents of the work buffer to the parameter file. The

command has to be augmented with a one or two character string.
This string is inserted as the MK parameter value in all frames
from the work buffer.

Using these commands a reference parameter file can be constructed. This
file is generally called a library, it may for instance contain typical
patterns on a phoneme or diphone basis. Using the W command several of
these can be combined in the work buffer. This wiil then form the
control pattern of an utterance of coherent speech. With a special
command (R) the work buffer can now be written as a separate parameter
file. Later this is used as input to the synthesis program.

Each data frame has a specified value of its duration in the DR
parameter. Other parameter values given apply to the beginning of this
time interval. An important feature is that parameter values may be
unspecified in a frame. This is marked with a negative parameter value;
all parameters are assumed to be positive or zero.
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The exception to that is the duration parameter. DR is always specified
and it may take negative values. This is useful especially to impose a
pitch pattern on a phoneme sequence. One may as an example devise a pair
of data frames where the first defines the pitch FO to be 150 Hz and has
a duration of 100 ms. The second frame defines FO=120 Hz and has the
duration -100 ms which brings us back to the original time. All other
parameters are left unspecified. In ’'square mode’ this is then
interpreted as a plateau at 150 Hz ond a step down to 120 Hz. When
inserted between data frames of phonemes it will do nothing to the
mutual timing of these.

7.3 SYNTHESIS MAIN PROGRAM

The main program for synthesis handles service functions like decoding
arguments from the operator, performing operations with the parameter
and waveform files, and calling a separate subroutine for the line
simulation. Its key task is to interpret the synthesis parameter file
and construct the corresponding area function. It also contains a
routine to piot sequences of area functions.

We will now take a closer look at the interpretation of parameter data.
Initially the first two data frames of the parameter file are read.
These tell which parameters are present in the input and their corres-
ponding smoothing time constants. The program has another table of
parameter names, namely those required for the operations. This is
compared to the input parameter names and a parameter pointer table is
constructed. This table then telis which word in an input data frame
that holds the value of any specific parameter. The reason behind this
is that the mutual order of parameters in the input file should be
irrelevant, something very helpful to the researcher. Should any
required parameter be missing in the input the operator is informed and
a corresponding constant defauit value is taken from a special table.

Another part of the preliminaries is to compute the coefficients of a
set of third order z-domain IlIR lowpass filters used to smooth the
parameter values from the interpretation. These filters are characte-
rized by a conjugate pole pair with an imaginary part equal a nominal
cutoff frequency w, together with a real pole:

51’2 2 (=,7 +- j)*wo
83 = -.7 = w,

All poles have the same real part. This does to some extent degrade the
symmetry of the filter time response, but a desirable effect of giving
zero overshoot. For this particular filter the smoothing time constant
will be 2.81/w, and the delay time 2.13/w,. The impulse and step respon-
ses of this filter are shown in fig 7.1. When the filter coefficients are
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set up then a table of ’'durations valid’ is also made, one entry for
each parameter. It is initialized to minus half the filter delay time.
This time bias is to make the half value point of the smoothed parameter
steps to coincide in time with the unsmoothed. Fig 7.5 shows an example
of control parameters interpreted in ’square mode’, as a tabulation and
as unsmoothed and smoothed functions of time.

' .er, during simulation, we proceed forward in steps along the time
scale. At each such step the entries in the table of 'duration valid’ is
decremented accordingly. When an entry becomes negative it shows that
time has expired for that parameter. The next value and a new interval
of validity is then established by searching the input frames. it should
ve stressed that it is by no means necessary that the different
parameters change synchronously, this because of the feature of possibly
unspecified data in the frames.

Several parameters define the excitation of the model. So far no more
elaborate modelling of the glottis has been implemented, that is, no
interaction from the gair on the glottal area is considered. instead the
glottis area model suggested by Fant (1979) is used, which inherently
approximates some of these effects. At present the following are used to
define a forcing function for the glottis area:

FO (100) Pitch in Hz

FG (125) Glottis characteristic frequency in percent of FO

FK (100) Steepness of glottis closure in percent

AV (0) Glottal peak area, in dB relative to 0.3 cm?

AC (0) Glottis opening for unvoiced operation, in dB rel 0.3 cm?

Values in brackets show default values used in absence of a parameter or
any value of it. Zero with the dB scale denotes cutoff, all parameters
are to take positive values. FG and FK apply to the Fant model and are
further illustrated in fig 7.2. AV and AC can mostly be considered as
binary on/off signais.

Oral area function data can be defined in two ways. One is by supplying
explicit areas for 18 tube sections from glottis to mouth in terms of
parameters BO — BF. This is of interest for test purposes and for using
area data obtained from X-ray tracings of the vocal tract. Alternatively
an oral area function is set up from the assumption of a sinusoidal
tongue profile as suggested by Liljencrants (1871). The magnitudes of a
sine and a cosine coefficient for the profile are given by parameters FS
and FC. The diameter of tube section number n is computed from
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Fig 7.3. Plane of tongue contour Fourier coefficient parameters
FC and FS. Circles represent contours of equal minimum area
relative to a normalizing area. Lloci for equal place of

constriction go radially. Symbols show typical positions of some
Swedish vowels.
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®(n) = 2=n=(n+.5)/16

FS-50 FC-50
s sin(d(n)) -
40 40

D(n)= 1 - # cos(d(n))/40

and the area is then set as

AR(n) = ARNOM = D(n) = /D(n)/

where ARNOM is a normalizing area, for instance 4 cm?.

The FS and FC parameters thus have a bias of 50 (percent) units.
Deviation from this of more than 40 units in their combined magnitude
will give a negative diameter and will represent a cutoff in the oral
passage. Effects of variation in the FS and FC parameters in a Cartesian
coordinate system are shown in the diagram if fig 7.3. The circles in
this are contours of equal constriction area, marked in fractions of the
normalizing area.

it is obvious that the same information could just as well be conveyed
using a pair of parameters in a polar coordinate system. A phase angle
could then represent the piace of constriction and a magnitude could
represent the degree of constriction.

The polar representation is simpler to handle conceptually but has not
been used for the reason of its adverse effect when it comes to interpo-
lation between shapes pertinent to different vowels. In fig 7.3,
consider the transition between vowels /a/ and /i/, widely distant in
the plot. A straight interpolation in the FS-FC domain will give inter-
mediate shapes with less constriction, even approaching a uniform tube
in the mid interval. Conversely, an interpolation in polar coordinates
would give little difference between the extremes in the radial direc-
tion, and an interpolation would follow an arc of almost constant area
of the constriction. This corresponds to clearly articulated interme-
diate vowels, contrary to what is the case in real speech. The Cartesian
representation in the FC and FS coefficients also bears a resemblance in
effect to the articulatory coordinates used by Lindblom and Sundberg
(1971) or by Coker (1878B). '

The sinusoidal shape is not used in the extreme pharyngeal region.
Instead in the first sections the areas are linearly interpoliated
between a fixed value at the gilottis and that of the fifth section.

Fig 7.4 shows a comprehensive plot of the vocal tract model and how the
different parameters control it. In this plot, as well as in the ones
produced for monitoring the main program, fig 7.6a, diameters are shown
rather than areas. Generally areas are taken as proportional to the
diameters squared.
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Apart from the tongue shape coefficients FS and FC, or the section by
section specification in terms of B0 - BF, the vocal tract shape
description is supplemented with the following parameters:

GL (50) Lip opening
GN (0) Nasal gate
GA (0) Apex gate

GL controls the area of the last tube section, independently of the
tongue shape. It has the same bias and scale factor as the FS and FC
coefficients, that is, 50 gives a nominal area and 10 gives the limit of
closure. GL has a marked influence on the first formant and also
controls the magnitude of the lip radiation reactance, that is, the end
correction.

GN controls a trap door corresponding to velum, it opens the passage
into the nasal tract. The nasal tract has a fixed shape defined in a
table of areas and the velar valve connects it to tube 6 of the vocal
tract. GA controls another valve at tube 15 opening into a closed three-
section line. This is to simulate a cavity under the apex of the tongue.

The area function is derived from the parametric input using a time step
of 5 ms. Once the areas of the complete vocal tract have been calculated
control is given to the line simulation subroutine that will compute a
corresponding sequence of waveform samples. The glottis area will of
course have to be evaluated on a sample by sample basis, so this is left
to a special section in the simulation routine to which the excitation
parameters are passed.

7.4 LINE SIMULATION SUBROUTINE

In the line simulation subroutine the signal waveforms are computed
after a number of supplementary operations. In earlier sections several
topics have been covered mostly with a theoretical view. Here we will
now deal with some additional practical aspects on their application.

The input is here the excitation parameters and the complete set of tube
section areas, except the area of the glottis section. We are going to
compute a sequence of 80 time samples corresponding to 5 ms at 16 kHz
sampling. A major part of the operations of course have to be performed
each sample interval, including determination of the glottis area and
loss coefficient.

The reflection and loss coefficients vary slowly in our pseudo-static
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system, so these can be recomputed at longer intervals. It was soon
found that a 5 ms update interval is far too long, especially when
opening or closing a tube section where the relative step in area can be
very large. Hence the area function as delivered from the main program
is interpolated in smaller steps. A suitable area update interval
appears to be 4 to B samples, this defines the area under—sampling
factor. It is hardly worthwhile trying to expand the update interval
much further since the extra saving of computer time will then be less
significant.

A convenient way to interpolate is to use a simple first order lowpass
filtering of the input area AR(n) to obtain the smoothed

ARS(n) := (AR(n)=ARS(n))/NAV + ARS(n)

as further commented with (5.22). Observe that the averaging time
constant is now multiplied with the under-sampling factor. One could of
course just as well use some other interpolation, for instance linear.

This is now the time to impose an important limiting on permissible
areas. Clearly zero or negative areas will cause severe numerical
trouble in the computations fortcoming. The conventional solution is to
limit areas downward to a small minimum, let us say .1 mm2. Provided
losses are taken in account this will give a good enough cutoff in the

line with laminar losses dominating.

Here we can explain why for instance oral cutoff with GL is defined at
the value 10 rather than 0. The input data may well tend toward a
negative area. After the smoothing the control parameter will then reach
zero with possibly some speed. But if the unsmoothed input gives zero
area, then the smoothing will reach this only asymptotically and you
tend to lose control of the exact moment of ciosure, it can even happen
that you may never reach it. The essential thing is thus that the
limitation of area is done after the smoothing.

Once the final area function is established we can proceed with the
dynamic adjustment of partial waves as in section 1.4. Also the set of
reflection coefficients are computed with (1.15), and the special
reflection coefficients required at the branches with (1.71).

With (3.5) the coefficients for the lip radiation impedance are settied.
In my experience this must be done every sample interval, an under-
sampling gives spurious sampling frequency subharmonics in the output
when the lip area changes rapidly.

A special array of short time average particle velocity is also
maintained. When areas are updated | also compute the net flow in each
section, divide it by the area and make a running average by first order
lowpass filtering as above. These data and the areas are used to
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evaluate the different series loss factors using (2.26) and appropriate
values from table 2.1. The larger of these form the result in a set of
loss coefficients, one for each tube section. Care is taken to include
the jet loss only when both the neighbouring areas are greater than the
current.

At this stage all information is available to excecute the scattering
computations and the corrections. At appropriate places the three-way
branches are treated. To simplify the program structure the oral and
nasal parts may be arranged and processed as one long linear array.
Afterwards the specific output waves at the branches are overwritten
with the results of the branch scattering equations for which the inputs
are still untouched. This is done in two passes, one for the even and
one for the odd junctions as outlined in section 1.6. Then the z~domain
recursions for wall impedance and lip radiation are excecuted.

Finally the narrowest place along the vocal tract line is located and
the particle velocity here is established. | keep a special (one-
dimensional) short time average of this constriction velocity, disregar-
ding in which tube it may occur. Using (5.23) | find a noise amplitude,
and if applicable a corresponding random number is added to one of the
partial waves as elaborated in section 5.

Closing operations in the simulation subroutine is to collect various

values as selected by operator switches and put them into buffers for
transfer to output files.
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Fig 7.5. Tabulation of synthesis parameter file with one frame
per line, and time waveforms of interpreted control parameters,
unsmoothed and smoothed.

The parameters define a nonsense utterance /asiton/ with constant
pitch, and these data are coherent with figs 7.6 - 7.8.

Fig 7.5
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a. Vocal tract model shape at time increments of 20 ms.
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8. CONCLUSIONS

Several physical phenomena relevant to speech synthesis have been
reviewed. They were formalized in a homogeneous manner in order to make
it easy to apply the results to the Kelly-Lochbaum reflection line
analog. The simple mode! has been augmented with a number of tricks to
render a comprehensive research tool for simulation studies of the vocal
tract. As many as possible of those tricks have been deliberately put
into the form of (mostly small) corrections to the classical static
scattering equations. One reason for this approach is that it makes it
particularly easy to connect and disonnect features for research
studies. The specific signal flow and storage pattern allows scattering
computations for one instant of time to be followed by one or more
rounds of additive correction computations.

Modifications to the scattering equations to account for dynamic changes
in the areas were discussed and a novel simple method was suggested. One
type of dynamic scattering equations, based on continuity in pressure
and flow, tends to diminish spurious signals due to undersampling of
area data. Such undersampling can be done, but with certain care to
avoid interference with the delay time though the line. The other type
is based on continuity in force and velocity which implies a physical
consistency and makes it capable of handling bandwidth changes due to
area time variation. The relevance of this for speech synthesis however
appears to be somewhat marginal. This model is more sensitive to area
undersampling.

The much neglected analogy of flow waves rather than pressure waves has
a conceptual advantage and generally gives a smaller range of numerical
variations, but proper dynamic and loss corrections are imperative for
handiing area cutoff situations.

The reflection principle applied for glottal flow modulation is
demanding because of the high speed area change. This would require a
dynamic model with f-v continuity, but specifically because of the
glottal area being relatively small the static pressure wave model
happens to perform approximately as well.

Parallel branches to the line makes it possible to implement the nasal
sounds and their complex patterns of pole—zero pairs in addition to the
all-pole characteristics of the single line. Also shunting cavities and
lines can be introduced.

Series losses are important in that they make it possible to cut off the
DC air fiow in a controlled manner. Without them other sounds than pure
vowels are difficult to handle. The laminar flow resistance controls
cutoff while the frequency dependent viscous resistance regularly
influences formant bandwidths in the mid-frequency range. It is easily
overshadowed by the non-linear "jet loss” when marked constrictions
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occur. Losses due to turbulent flow appear to be mostly negligible, they
are normally overridden by one of the other three.

The lip radiation impedance is the dominant controlier of high frequency
formant bandwidths. It also accounts for considerable formant frequency
shifts, dependent on the lip area and the associated end correction. A
technique of interfacing the reflection line analog to a radiation
impedance model formulated in the z domain was illustrated.

Shunt losses are dominated by the vibrations of the vocal cavity wall.
The major effect of this is on the first formant where it elevates the
frequency and often dominates the bandwidth. The losses from direct
radiation into the walls are negligible. Heat conduction loss is of
little consequence to the sounds produced, but can have a function in
damping out high frequency waves within closed cavities. The wall
impedance model used is also defined in the z domain. It contains a
capacitive element to handle air storage under internal pressure buildup
in a closed vocal tract.

Automatic generation of noise at constrictions was theoretically
reviewed and a practical procedure was defined.
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APPENDIX

Reprint from STL-QPSR 4/1871.

in this version legend of table il-A-lll is corrected and a missing word on
page 12, line 2 from bottom, is added.



Reprint from STL—QPSR 471971, pp 9-18 (sect li. Speech production, paper A.)

FOURIER SERIES DESCRIPTION OF THE TONGUE PROFILE =

J Liljencrants

Intraoduction

in the study of the movements of the articulatory organs the sagittal
projection is often used. Such images can for instance be obtained by x-ray
photography.

The purpose of this report is to show how data on the tongue profiie
obtained that way may be described and modelled in terms of a Fourier
series. Capitalizing on the generally smooth shape of the tongue, the
description is compact, and the accuracy can be selected with the number of
coefficients inciuded. The method can thus be conveniently used both to
describe profiles of live speakers as well as for operating simplified
artificial models.

Attention is given to some practical aspects like placement of the
coordinate system, and interpretation of the Fourier coefficients.

Data collection

The material investigated is a set of x-ray photographs of two speadkers,
each uttering ten different sustained vowels. Some processing has aiso been
made on material with the same persons singing, both subjects being educated
singers. The material was courteously supplied by Sundberg and Lindbiom and
is the same as used by them for other investigations, see ref. (1).

The mid—sagittal contour of the tongue body was traced from the photo-
graphs and put on a coordinate system, as shown in Fig. ll-A-1. The system
has a polar part covering the oral cavity and a Cartesian part for the
pharyngeal region. The contour was sampled at 10° intervais in the polar
system and at 5 mm intervals in the Cartesian. The data was given to the
computer as a matrix with a 30-point element for each vowel. in general the
profile occupied samplies number 2 to 28B. The remaining sampies number 0,1,
and 29 were filled in with values linearly interpolated between sampies
number 28 and 2.

All coordinate values in this study are in cm. The scale pertains to the
x-ray photographs which are larger than the subjects by a factor of 1.2.

# Expanded version of paper DD16, presented at the 79th Meeting of the
Acoustical Society of America, April 1970.
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STL-QPSR 4/1871 10

To arrive at a suitable placement of the coordinate system the different
tracings for one subject were aligned with respect to the upper incisors and
the frontal protrusion of the second vertebra. Then the origin was placed at
a visually determined center to the oral part of the tongue profile and the
vertical axis was made approximately paraiiel to the rear pharyngeal wall.

Fig. lII-A~2 graphically shows the input data for one subject arranged in
a linear manner. The horizontal coordinate is the sampie number. The verti—
cal coordinate is the radius in the polar system of the mouth, and the
distance from the vertical axis in the pharyngeal system.

Different subjects and placements of the coordinate systems are indicated
with speaker codes in the illustrations as explained in Table IlI-A-l. Also
the vowels used are indicated with codes as given in Table IlI=-A-Il.

Philosophy

By inspection of Figs. lI-A—-1 and iI-A-2 we can make some elementary
observations. First we see that the mean value of the Yexcursion coordi-
nate”, piotted vertically, for the different profiles does not change
significantly between voweis. This can be regarded as a consequence of the
"conservation of mass” in the tongue body. Of course this statement has only
a limited validity since the sagittal third dimension has been ignored.
Secondly, the strong coherence between successive samples is apparent, that
is, the geometrical magnitude of the fine structure is much smalier than
that of the overdail gross shape variation. Many of the shapes have a strong
resemblance to a sinusoid. These are the reasons for the proposition of this
experiment, that the shape could efficiently be described in terms of a
Fourier series.

To test this a number of computations have been performed.

Basic processing

The profiles were analyzed into a number of Fourier coefficients. For
convenience a representation in terms of sine and cosine terms was selected:

2 N-1
CC, == 2 Y, * cos(Znrn/N)
N n=0

N-1
2 Y, = sin(2nrn/N)
n=0

CS, =

ZIN

N-1
2 Y,
n=0

CCq =

2| -

CSp = O



VOWEL NO

SPEAKER 2

LIPS LARYNX
SAMPLE NO LENGTH NORMAL IZED
0 2 4 ® 8 10 12 14 16 18 20 22 24 26 28

LT g
T I ‘

>c=‘«""‘<
//W\/

T Y

yyai
<(

Y.

\ s
P \‘._._..-f'/

\ PN e, N g
) \\\M' T
/\N\\*._‘_\_lw-.——-" T ——
] _/--*""""”—._\w-...—-—

"
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Table li=-A-l.

Speaker codes in the illustrations

11

Speaker Comments
0 Subject RL, fixed coordinate system
2 Subject JS, fixed coordinate system
S Subject RL, moving coordinate system,
folilowing the mandible
2] Subject RL, fixed coordinate system, transiated
.5 cm upwards and .5 cm forwards
as compared to speaker 0O
Table li-A-il.

Vowel codes in the illustrations

Vowel IPA
0

WoONOUGHEWN =
Smm‘&ﬁ:gog-'c

Table li—-A-lil.

inter—speaker correlation coefficients

CCy CC, CS,
Speakers 0, 2 0.784 0.895 0.957
Speakers 0, 5 0.977 0.987 0.956

Speakers 0, 6 D.961 0.948 0.994

cc,
0.365
0.882

0.650

cs,
0.637
0.968

0.870
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Y, are the ordinate values of the N samples from the original profile.
CS, and CC, are the sine and cosine Fourier coefficients in the single-sided
(towards positive spatial frequencies) line spectrum of the periodic
continuation of the shape.

Alternatively the Fourier coefficients may be represented with magnitude
and phase as

R, =V CC,2 + CS,2
@, = atan(CS,/CC,)

Having computed the Fourier coefficients the shape can be reconstructed
using the inverse transform. Let us then include only the lower terms, up to
number U:

U
Yo' = CCo + 3 (CC,ecos(2nrn/N) + CS #sin(2nrn/N))

r=1

The omission of the higher terms is equivalent to a spatial lowpass
filtering, and only the gross features of the original shape will be
preserved. Thus the computation wiill render an approximate model of the
contour. The accuracy will depend on the number of coefficients included.
For U=N/2-1 there will be no approximation, the re~synthesized contour will
match the original exactly.

In Figs. lI-A-4 and lI-A-5 the input data are shown as small squares and
the resynthesized data, using U=2, are drawn as solid lines. At the lower
left corner of each plot the Fourier cosine and sine coefficients are given.
Also, preceded by an E, is the RMS deviation between the data and the model.
This error represents the total "power” of all the higher harmonics, not
used in the re-synthesis.

As can be seen in the plots the error is in general quite small, even
using the DC term and the fundamental only (Fig. H-A-3): This is a primary
indicator that the Fourier expansion is an efficient descriptor of the
profile shape.

It may be meaningfui to measure the fidelity of the Fourier model to the
input data in terms like harmonic distortion. If the fundamental is the
highest harmonic used this distortion can be defined in a conventional
manner:

N/2-~1 1/2 N/72-1 -1/72
d=( 3 er) o = R,2)
r=U+1 r=0

Using U=2. If ailso some harmonics higher than the fundamental /Zare/
incorporated in the model we can use U greater than 2.



Fig. II-A-3
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Input data (dots) and Fourier model (solid) for the various
speakers and a set of 10 vowels, (Cf. Tables II-A-1 and
II-A-2). Legend at lower left in each plot shows vowel
number, RMS error, and cosine and sine coefficients,
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Fig. II-A-8 - 11, Fourier coefficients for the profiles of Figs, 1I-A-4 - II-A-7,

Digits denote vowel number and are placed according to the
coefficients of the spatial fundamental, Vectors extending
from the digits denote the coefficients of the second harmonic,
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Fig. II-A-12, Plots of various artificial contours, using the two lowest

spatial harmonics, to illustrate the function of the model.
Cf. Fig. I-A-13,



Fig., II-A-13, Coefficients for the artificial profiles of Fig., II-A-12,
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This expresses the ratio of the "unwanted signal”, (which is equivalent
to the RMS error) to the "wanted signal’”, (namely the data). The formuila
also includes the DC term which is a deviation from usual practice in
defining distortion on signals.

Visualization of analysis data

The representation of the tongue profile by means of a few Fourier
coefficients may at first glance seem to be very far fetched and difficult
to interpret. We shall now illustrate thot this need not be the case,

in Figs ll-A-8 and lI-A-9 the sine and cosine coefficients of the funda-
mentai is plotted on a Cartesian coordinate system. The values for each of
the contours in Figs. ll=A-4 and li-=A-5 is indicated with numerais corres-
ponding to the vowel number. Also from each of these points there is a
vector showing the coefficients for the spatial second harmonic. The repre-
sentation of the coefficients in terms of magnitude and phase is aided in
the coefficient plot by the circles. These then indicate the magnitude
coordinate of the spatial fundamental.

Figs. li-A-12 and IiI-A-13 show the profiles and coefficients for a
simplified, artificial case. Item number 0 here has a DC coefficient only
and corresponds to a case with "neutral” articulation. In items 1 to 5 a
spatial fundamental having a constant magnitude is added, and its phase is
systematically varied. In the correspondent plots of contours we see how the
point of maximal excursion, or equivalently: point of narrowest constric-
tion, moves from a ’’dental” position to a "pharyngeal”. Thus the phase of
the spatial fundamental is a measure of the place of articulation. This is
also indicated in Fig. lI-A-13 with markers around the circumference of the
plot.

In the simple model with DC term and fundamental and having a fixed
coordinate value for the contour of palate, velum, and rear pharyngeal wali
it is also easy to find the locus of complete lingual closure in the
coefficient plot. It is the circle where the magnitude of the fundamental
equais the difference between the paiatal-pharyngeal coordinate vaiue and
the DC coefficient.

When also a second harmonic is introduced as in items 6 to 9 in Fig. li-
A-12, we see that the increased spatial resolution may be used in modeling
for instance the tongue tip. It is then however more difficuit to find a
locus of complete closure, but it can still be done in an elementary way by
vector addition in the coefficient plot, and keeping in mind to scale the
phase of the higher harmonic vectors properly.
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The function of the Fourier model of the tongue may aiso be further
illustrated with a mechanical device as outlined in Fig. ii-A~14. A circular
disk has a central pivot. When the disk is tilted the height of its circum-
ference will be approximately a sinusoidal function of the angle around the
disk. The vertical movements of equidistant points on the disk are trans-
ferred with thin wires to pointers arranged in a coordinate system. The set
of pointers will indicate the model contour. The cosine and sine coeffi-
cients of the spatial fundomental are given by the back-forth and the
sideways tilt of the disk respectively. The DC term may be controlled by
elevating the pivot of the disk.

Positioning of the coordinate system

At the outset of this experiment it was thought natural to use a
coordinate system having the mandible as a reference, since a large part of
the lingual muscles are joined with the mandible. Some data for this
placement of the coordinate system is shown in Figs. lI-A-6 and il-A-10.

A comparison with the data of Figs. li-A-4 and lI-A-8, which pertain to
the same subject, shows that the deviation of the model from the ideal is
not improved, the mean error is essentially the same. So the accuracy aspect
does not seem to be an argument for a coordinate system foliowing the
mandible. One could however still hope that the additional information
necessary to specify the mandible position would give a dividend in form of
a smaller variation in the coefficients describing the tongue shape.
Especially this ought to be the case with the spatial DC term if the bulk of
the tongue was to follow the jaw. A comparison of the data shows that the
standard deviation of the DC term is indeed smaller in the mandibuiar
coordinate system, but not very much. In the fixed coordinate system we have
Oro = 0.219 and in the moving og, = 0.172.

The conclusion will be that for the purpose of describing the profile
shape there is no gain in taking the mandibular position into account,
because the increased number of parameters will not give a better accuracy
or a more easy interpretation. Also it will be more circumstantial with a
moving tongue coordinate system to determine the distance between the tongue
profile and the stationary structures of the speech organs.

A different problem is to determine how critical the positioning of the
coordinate system is with relation to the stationary structure. Figs. H-A-7
and I-A-11 show data on speaker 6. These pertain to the same tracings as



Fig, 1I-A-14,

Mechanical device to illustrate the Fourier model.
Sine and cosine coefficients of the spatial fundamental
control the tilt of circular disc with a central pivot, '
Vertical movements of its periphery are transferred
with thin wires to coordinate system at top., Wires
are kept taut by small weights.
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for speaker O but the coordinate system has been transiated .5 cm forwards
and .5 cm upwards. Inspecting the polar coefficient plots in Figs. li-A-B
and lI-A-11 shows that the distribution of the coefficients is very closely
similar. We see that the set of data points has been translated and somewhat
rotated, but the interrelations are essentially unchanged.

Normalizing

When the tongue contour comes close to the origin of the polar system,
then the sampling density, defined as samples per unit of contour length,
becomes rather high at this portion. To compensate for that over-representa-
tion of a small part of the contour a length normalization was performed in
part of the computations. To do this an auxiliary table was computed which
contained the distances between successive samples. This table was then
converted by summation into another table with cumulative distance along the
contour. Finally, normalized input data was derived by interpolation from
the original input in 30 points equidistant along the contour. Some data
normalized this way are shown in Fig. lI-A-2, where the original data points
are marked with dots.

When the errors are compared in the two cases with and without norma-
lizing with respect to contour length, then we find that the difference in
general is so small that it is of no consequence. An important proviso is
however that the coordinate system has been put reasonably central with
respect to the population of contours so that these will hot come too close
to the origin of the polar system.

As a consequence the extra labour of normalizing the data was abandoned
for a larger part of the investigation.

Correlation analysis of the Fourier coefficients

For a further illustration a number of correlation coefficients have been
computed. In Table Il-A-ill (p. 11), different speadkers are pairwise
compared. For each of the Fourier coefficients the correlation coefficient
has been computed, using the sine/cosine coefficients. For the Fourier
coefficient X with ordinal number r, speakers k and |, and using index n for
the N voweis, the correlation coefficient was computed as

Be Kk,

Or,k,! =
Oy k*0¢ |
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with the covariance

s

1
Be kx,1 = ﬁz (xr,k,n - mr,k)""(xr,l,n - mr,l)
n

var iance

2 ! 2
6 k = =2 (Xp x,n =M )
N q

and mean

i
me g = ﬁzxr,k,n
n

A high correlation for different speakers using the sine/cosine coeffi~
cients will indicate that their corresponding coefficient plots (as in Figs.
I-A-8 to lI-A-11) are similar. The differences eliminated by the correla-
tion analysis are those of a parallel translation and of magnitude scaling.
A shortcoming is however that differences caused by rotation of the plots
are not compensated for. Rotational differences do exist as can be seen from
the plots, and if these had been compensated for the correlations of table
li-A-ill would probably have been still higher.

The purpose of these computations is to show that:

a. comparing different subjects (speakers D and 2), the DC term and the
spatial fundamental are strongly correlated. This implies that the gross
shapes are similar for the two sublects uttering different vowels. The
second harmonic is not as strongly correlated which should be due to a
more subject dependent fine structure.

b. comparing different coordinate systems, cranium based and jaw based,
(speakers 0O and 5), all coefficients are strongly correlated. From this
it is concluded that it is irrelevant which coordinate system is
gselected, so far as the reiative distribution of the coefficients for the
vowels is concerned. In other words, the points in Figs. II-FA-8 and li-A-
10 are arranged in essentially the same pattern.

c. considering a displocement of a cranium based coordinate system (speakers
0 and 6) the same conclusions as in b. seem to hold.

These results are not very revolutionary in themselves, but they confirm
the usefuiness of the Fourier coefficients as descriptors.

Another correlation study is shown in Table li-A-IV. For each speadker,
the correlation between the various Fourier coefficients has been computed.
The same formulae as above were used, but using r as subscript for the
speaker and k and | as subscripts for two Fourier coefficients. Furthermore
these computations were made on both the sine/cosine and the magnitude/phase
representations. Then a normalized phase measure was used, varying from0O to 1:

f, = (o, + )/2n

in the table, for simplicity, the nonexistent DC sine and phase
components are represented by zeros.
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Table II-A-1IV,

Speaker 0

Speaker 2

Speaker 5

Speaker 6

Speaker' 0

Speaker 2

- Speaker 5

Speaker 6

sin/cos
CC%

1.000
0.000
-0.393
-0,873
0.876
-0, 166

1.000
0.000
-0.580
-0.740
0.548
0.286

1.000
0.000
-0.518
-0.809
0.650
~-0.157

1.000
0.000
-0, 445
-0.824
0.383
-0, 057

Magn/phase

R
o

1.000
0.000
~0, 165
0.779
-0.093
-0.622

1.000
0.000
-0.153
0.709
0.546

0,009

1.000
0.000
0.261
0.744
-0.108
-0,514

-1.000
0. 000
0. 668
0. 669
-0.056
-0,253

0.000
0.000
0.000
0.000
0,000

0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000

0,000
0,000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000

0.000
0,000
0. 000
0.000
0.000

0.000
0.000
0.000
0,000
0,000

0,000

0.000
0.000
0.000
0.000

1.000
0.423
-0.316
0.084

1,000
0.541
-0.813
0.483

1.000
0.518
-0.016
0.049

1.000°

0.245
-0.273
0,151

1. 000
0.219
0,555
-0.390

1.000

- -0,280

0.386
0,031

1.000
0.668
0.564
-0, 621

1. 000
0.512
0.409
-0.769

Cs

1.000
-0.754
-0,051

1. 000
-0, 689
-0.363

1.000
-0.517
-0.226

1. 000
-0. 086
-0. 198

1. 000
0.421
-0. 635

1,000
0, 445
-0.096

1. 000
0. 437
-0. 490

1. 000
0. 334
-0.103

cC

1,000
-0. 487

1.000
-0.206

1.000
-0.377

1,000
-0.836

1.000
-0.174

1.000
-0.236

1.000
-0.068

1. 000
-0.314

17.

CSs

1.000

1. 000

1,000

1.000

1.000

1,000

1,000

1,000
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The more interesting part of the table is the one with the correlations
between the magnitude/phase coefficients, because of the spatial fundamental
can be interpreted as measures of effort and place of articulation.

Examination of the table may lead to the following conclusions:

a. In all cases there is a strong correlation between the DC term and the
phase of the spatial fundamental. This indicates that these two terms are
not orthogonal when regarded as articulatory parameters.

b. The fact that this hoids also for speaker 5 (jaw based coordinate system)
tends to counter indicate the usefulness of the mandibular position as an
articulatory parameter.

Conclusions

The mid-sagittal profile of the tongue can be efficiently described in
terms of a set of Fourier coefficients. For modelling purposes it should be
sufficient with only two numbers to describe the profile, the magnitude, and
the phase of the spatial fundamental. Possibly the additional inclusion of
the DC term may be useful, but this is found to be correlated to the
fundamental phase. ‘

For increased accuracy in modelling of live subjects an arbitrary number
of higher terms may be included, without changes in the values of the basic,
low spatial frequency harmonics. There seem to be no tangible gains in using
the mandibular position as a reference in the description. On the contrary,
a moving coordinate system for the tongue profile will make estimations of
vocal tract diameter and area function a good deal more complicated. It is
thus recommended that the mandibular position is not used as a primary
articulatory parameter, but rather as a secondary parameter, dependent on
the others.
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